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Einstein-p-form systems in which all spatial directions are compactified on a manifold

of nontrivial topology. This is achieved for all maximally oxidised theories associated with

split real forms, for all possible compactifications as defined by the de Rham cohomology of

the internal manifold. In each case, we study the Coxeter group that controls the dynamics

for energy scales below the Planck scale as well as the relevant billiard region. We compare

and contrast them with the Weyl group and fundamental domain that emerge from the

general BKL analysis. For generic topologies we find a variety of possibilities: (i) The

group may or may not be a simplex Coxeter group; (ii) The billiard region may or may

not be a fundamental domain. When it is not a fundamental domain, it can be described

as a sequence of pairwise adjacent chambers, known as a gallery, and the reflections in

the billiard walls provide a non-standard presentation of the Coxeter group. We find that

it is only when the Coxeter group is a simplex Coxeter group, and the billiard region is

a fundamental domain, that there is a correspondence between billiard walls and simple

roots of a Kac-Moody algebra, as in the general BKL analysis. For each compactification

we also determine whether or not the resulting theory exhibits chaotic dynamics.
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A. The complete classification 34

1. Introduction and motivation

Generic solutions to Einstein’s gravity coupled to dilatons and p-forms in the neighbour-

hood of a spacelike singularity possess a surprisingly rich and complicated structure. This

was first revealed by Belinskii, Khalatnikov and Lifshitz (BKL), who showed that in vacuum

four-dimensional Einstein gravity the dynamical approach to the singularity is oscillatory

and chaotic [1 – 3] (see also [4]). Even though the chaotic oscillations disappear for pure

gravity in ten dimensions or higher [5, 6], they are present in the bosonic sectors of all

supergravities related to string and M-theory due to the presence of p-forms [7]. Chaos is

revealed by casting the dynamics of gravity at each spatial point as billiard motion in a

finite-volume region of an auxiliary hyperbolic space [8 – 10]. This type of dynamics has

been extensively studied in mathematics and is well known to exhibit chaotic behaviour.

1.1 Cosmological billiards and overextended U-duality

The BKL analysis reveals a connection between gravitational dynamics and Kac-Moody

algebras. For certain theories, including all maximal supergravities, the region where the

billiard dynamics takes place can be identified with a bounded region within the Cartan

subalgebra h of a Lorentzian Kac-Moody algebra g. In fact, the billiard motion is con-

fined to the fundamental Weyl chamber in h and the geometric reflections of the billiard

generate the Weyl group W[g] of g. This connects the chaotic nature of certain super-

gravity theories to the hyperbolic nature of the underlying Kac-Moody algebra [11]. For

example, the algebras whose Weyl groups control the dynamics of the string-related su-

pergravities are E10 (SUGRA11, Type IIA & IIB), BE10 (Heterotic, Type I) and DE10

(pure supergravity), which are all hyperbolic [12]. The Kac-Moody algebras governing

the BKL behaviour are closely linked to the “U-duality” algebras appearing in compact-

ifications of Einstein-dilaton-p-form systems to three dimensions: if u is the symmetry

algebra in three dimensions, then the Kac-Moody algebra g controlling the dynamics in

the BKL-limit is the “overextension” u++ of the U-duality algebra u [13] (see [14, 15] for

details on U-duality).1 By computing the billiard directly in three dimensions where the

U-duality symmetry is manifest, and using the invariance of the billiard structure under

toroidal compactification, it has been shown that taking the BKL-limit precisely mimics

the overextension procedure described in [17].2 In this way the BKL-limit “unveils” an

algebraic structure which could play the role of a fundamental underlying symmetry of the

1We assume the real Lie algebra u to be split. The BKL rules for the general case are given in [16].
2In [17] it is called the “canonical hyperbolic extension”.
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theory [18]. This also lends indirect support for Julia’s conjecture that E10 is the symmetry

of eleven-dimensional supergravity compactified on T 10 [19, 20].3

1.2 Intermediate asymptotics

The original BKL analysis is classical and has been pushed all the way to the singular-

ity [1, 2]. As such it is valid for any spatial topology. In the approach to a spacelike

singularity there is an asymptotic decoupling of spatial points, and the dynamics becomes

“ultralocal”. These results (decoupling of spatial points and chaotic oscillations) are by

now well supported by extensive analytical and numerical evidence; a non-exhaustive list

of references include [34 – 42].

The classical analysis has however obvious limitations and it is not clear what becomes

of the BKL results for energy scales above the Planck scale, where quantum gravity effects

cannot be ignored. In the standard BKL analysis, which ignores quantum effects, no

walls are removed as the big crunch is approached. But, when some spatial dimensions are

compact, there is a wide range of initial conditions for which walls corresponding to massive

modes are always subdominant until the universe enters the quantum regime, and these

walls are not relevant for the billiard analysis while the universe is described by classical

physics [43, 44]. For this broad set of initial conditions, there is no epoch in which the

usual classical BKL analysis, with the full set of walls, applies.

For this reason, it is of interest to consider the regime of intermediate asymptotics where

the curvature is much smaller than the Planck curvature but where the billiard analysis

applies (see [45]). In that pre-Planck regime, it is not true that the topology of spacetime is

irrelevant [43]. A modification might arise in the presence of p-forms because the massless

spectrum of p-forms in the lower-dimensional theory depends on the de Rham cohomology

of the internal manifold, and since massless degrees of freedom dominate in the BKL-limit

before reaching the Planck scale [43], non-trivial compactification eliminates billiard walls

corresponding to degrees of freedom which are rendered massive in the compactification.

Depending on which walls are removed by the compactification, a chaotic theory can be

rendered non-chaotic. Note that the suppression of massive modes exhibited in [43] is a

classical result, which follows from the virial theorem. However, one could argue that it is

in fact also true quantum mechanically (in the intermediate regime where the geometry can

be treated as classical but the matter fields are quantum-mechanical), for standard methods

reveal that the expected energy density ρpp of pair-produced particles is at most [46]

ρpp ∼ H2e−m/H , (1.1)

3In this paper we shall mostly focus on the “overextended” Kac-Moody algebras, which are closely

linked to compactifications to one (timelike) dimension. For related work on affine Kac-Moody algebras,

i.e., extended Lie algebras, in the context of reductions to two dimensions, see, e.g., [21 – 27]. So called

“very extended” Kac-Moody algebras have also been extensively studied in the literature. Most notably,

the Lorentzian Kac-Moody algebra E11 has been put forward as a possible underlying symmetry of eleven-

dimensional supergravity (and, perhaps, M-theory) [19, 28 – 31]. See also the recent work [32, 33] in favour

of this conjecture.
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where H is the effective Hubble parameter and m the particle mass. The exponential

suppression of massive mode pair production follows the point particle intuition [47], with

an even greater suppression expected for string pair production [48].

There are a number of reasons to better understand the interplay between BKL dy-

namics and compactification. On the physics side, the BKL-limit with compact internal

spaces is relevant for certain types of cyclic or “pre-big bang” cosmological models built

from string or M-theory (see, e.g., [49 – 52] and references therein). Cosmological models

with a big crunch/big bang transition rely on a smooth collapsing phase as they approach

the big crunch singularity, hence chaotic BKL oscillations close to the singularity are a

potential problem for these models. If chaos can be removed by interpreting our four-

dimensional world as an effective description of a more fundamental higher-dimensional

theory where the “troublesome” billiard walls are eliminated through the cohomology of

the internal space, the problems with BKL chaos in these models may be circumvented.

On the mathematical side, the billiard regions and the reflection groups that emerge after

compactification possess a rich structure which deserves investigation.

1.3 Summary of results

The compactification analysis was recently carried out for eleven-dimensional supergravity

and heterotic supergravity in [44]. This showed that, in most cases, the BKL-limit does not

produce a dominant wall set with the properties required of a valid Kac-Moody root system.

In this paper, we extend the investigation initiated in [44] by studying compactifications

of all the maximally oxidised theories originally classified by Breitenlohner, Maison and

Gibbons [53] and further analysed in [54, 55]. These theories associate an Einstein-p-

form system with any algebra u in the A − G Cartan classification. The Einstein-p-form

system, when compactified on a torus, yields a scalar coset model in D = 3 spacetime

dimensions with U-duality symmetry algebra given by a split real form of u, and whose

BKL billiard is associated with the overextension u++ of this split real form. We perform

an exhaustive analysis of all compactifications (defined by their vanishing Betti numbers)

of all of the A − G Einstein-p-form systems. We present the Dynkin diagrams or Coxeter

graphs describing the resulting billiards, and determine whether chaos is present in all

possible cases.

We also elucidate the structure of the group of reflections in the dominant billiard walls

that survive compactification, and its relation with the billiard region. The group is always

a Lorentzian Coxeter group but the billiard region is not necessarily a fundamental domain

of this Coxeter group. Rather it may correspond to a union of images of the fundamental

Weyl chamber of the hyperbolic algebra u++ associated with the uncompactified theory.

Using techniques from the theory of buildings we show that this region has a mathematical

description as a sequence of pairwise adjacent chambers, known as a gallery, inside the

Cartan subalgebra h ⊂ u++. Moreover, the resulting Coxeter group is then described by a

non-standard presentation, with additional relations between the fundamental reflections,

apart from the standard Coxeter relations. The Coxeter group itself might not be a simplex

Coxeter group (i.e., a Coxeter group with fundamental region that is a simplex). It is

only when the Coxeter group is a simplex Coxeter group, and the billiard region is a
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fundamental domain, that there is a correspondence between billiard walls and simple

roots of a Kac-Moody algebra. This situation is generically absent in the compact setting

(in the intermediate regime considered here).

1.4 Outline of the paper

Our paper is organized as follows. Section 2 gives a quick review of crucial elements of

the billiard construction, with emphasis on the associated Coxeter group structure and

its underlying geometric properties. In particular, we analyze some properties of convex

polyhedra in hyperbolic space and explain how they can be used to understand certain

features of Coxeter groups. In section 3 we give some useful facts regarding the wall

systems after compactification. We extend the set of theorems introduced and proven in [13]

regarding the set of dominant walls for a given Einstein-dilaton-p-form system, to include

the cases where individual p-form components are eliminated. We introduce the notions

of formal Coxeter group and billiard group that will play important roles in subsequent

developments. These concepts enable us to discuss general features of the Coxeter group

structure of the reduced billiard, and we analyze in detail the properties of the new billiard

domain. Most importantly, we show that this domain corresponds to a gallery, and we

demonstrate how the structure of this gallery is related to the presentation of the associated

Coxeter group. In section 4 we describe in detail several especially illuminating cases in

order to illustrate the techniques that we use, and to put the abstract results of section 3 on

a concrete footing. In section 5 we end with concluding remarks and suggestions for future

research. Finally, a complete classification of all possible compactifications of maximally

oxidised theories is given in the appendix.

2. Coxeter billiards and compactification

In this section we set the stage for the analysis carried out in sections 3 and 4. We give

a brief review of the billiard interpretation of the dynamics in the BKL-limit, without at-

tempting completeness; more details can be found in a number of review articles [9 – 12].

Following [43, 44] we also describe how compactification on manifolds of non-trivial topol-

ogy modifies the billiard dynamics by projecting out walls associated with p-form fields

which are rendered massive in the compactification. Furthermore, this section introduces

some useful technology in the theory of Coxeter groups that will be crucial for understand-

ing the main results of section 3. In particular, we analyze certain properties of convex

polyhedra in hyperbolic space, and the associated Gram matrices.

2.1 Cosmological billiards and Coxeter groups

2.1.1 The BKL-limit, billiards and Kac-Moody algebras

Following Belinskii, Khalatnikov and Lifshitz we suppose the dynamics of gravity close to

a spacelike singularity can be described, at each spatial point, as a piecewise linear motion

of an auxiliary particle in a region of hyperbolic space [1, 8, 9]. The BKL analysis uses an

– 5 –
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asymptotic spacetime metric of the form

ds2 = −(g dτ)2 +
d

∑

i=1

e−2βi(x,τ)(ωi)2, (2.1)

where g is the determinant of the metric on spatial slices and ωi is the spatial “Iwasawa

frame” (see [10, 59]). The singularity occurs at τ → ∞ when the spatial volume density g

collapses locally at each spatial point. The equations of motion imply that the dynamics

of the gravity-dilaton-p-form system at a fixed spatial point is that of a massless particle

with coordinates βµ(τ) moving in an auxiliary space, called β-space, Mβ, with metric

dσ2 = Gµνdβµdβν =
∑

i

dβidβi −
∑

i,j

dβidβj +

q
∑

k=1

dφkdφk. (2.2)

This metric is flat and of Lorentzian signature, and so we have

Mβ ≃ R
1,M−1, (2.3)

where M = d + q (q being the number of dilatons φ). The dynamics in the BKL-limit

corresponds to free linear motion in Mβ, interrupted by specular reflections against the

walls defined by ωA(β) = 0, where ωA ∈ M⋆
β are the wall forms. The wall forms include

the symmetry walls

sij(β) = βi − βj , (i, j = 1, . . . , d ; i > j), (2.4)

the gravitational walls4

Gijk(β) = 2βi +
∑

m6=i,j,k

βm, (i 6= j, i 6= k, j 6= k), (2.5)

and, if p-form fields are present, they produce electric and magnetic walls

e
[p]
i1···ip

(β) = βi1 + · · · + βip +
1

2
λ(p)φ, (i1 < · · · < ip),

m
[p]
i1···id−p−1

(β) = βi1 + · · · + βid−p−1 − 1

2
λ(p)φ, (i1 < · · · < id−p−1), (2.6)

where λ(p) is the dilaton coupling for the p-form in question. All of the wall forms presented

above are spacelike, (ω|ω) > 0, implying that the associated walls defined by ω(β) = 0 are

all timelike. Since the wall forms belong to the dual space M⋆
β, their scalar products are

computed with the inverse metric

(ω|ω′) = Gµνωµω′
ν =

∑

i

ωiω
′
i −

1

d − 1

(

∑

i

ωi

)(

∑

j

ω′
j

)

+

q
∑

k=1

ωφkω′
φk , (2.7)

4There are actually two types of gravity wall forms; the other set of wall forms being Gi(β) =
P

j 6=i βj .

These are special because they are lightlike, (Gi|Gi) = 0, in contrast with all the other wall forms which

are spacelike. For the purposes of this paper the walls defined by Gi(β) = 0 are of no relevance since they

are always subdominant with respect to the spacelike gravity walls defined by Gijk(β) = 0.
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The walls confine the billiard motion to the region Pβ where all the wall forms present in

the case at hand obey ωA(β) ≥ 0. These wall forms can be expressed as linear combinations

with nonnegative coefficients of a finite number N of “dominant” wall forms ωs; hence the

billiard region Pβ is defined by:

Pβ =
{

β ∈ Mβ

∣

∣ ωs(β) ≥ 0, s = 1, . . . , N
}

. (2.8)

The other (subdominant) walls are hidden behind the dominant ones, implying that they

are irrelevant in the BKL-limit.

For a given theory, the precise structure of Pβ depends on the topology of spacetime

because the relevant collection of p-form walls depends itself on the cohomology of the

internal manifold in the pre-quantum gravity regime considered here [43]. This will be

discussed further in section 2.2.

Because the billiard walls are timelike hyperplanes in R
1,M−1 the reflections with re-

spect to the walls preserve the future lightcone L+ ⊂ R
1,M−1, and in particular they

preserve the set of future-oriented, norm −1 vectors in R
1,M−1, corresponding to the hy-

perbolic space Hm ⊂ L+ (M = m + 1).

Not all of the βµ are physical because of the Hamiltonian constraint

∑

i

∂τβ
i∂τβ

i −
∑

i,j

∂τβi∂τβ
j +

q
∑

k=1

∂τφ
k∂τφ

k = 0. (2.9)

This constraint enables us to project onto a subspace of physical dynamical variables,

which can be conveniently taken to be precisely the m-dimensional upper sheet of the unit

hyperboloid just introduced

Hm = {β ∈ Mβ | (β|β) = −1 and β ∈ L+}. (2.10)

The lightlike linear motion in Mβ then corresponds to geodesics in hyperbolic space. Sim-

ilarly the walls, being timelike and going through the origin, project radially onto hyper-

planes in Hm (which are at the same time the intersections of the walls with Hm). The

region in Hm bounded by the (projected) hyperplanes will henceforth be referred to as the

billiard table. It is customary to go back and forth between the projected description and

the original description in Lorentzian space without always making the distinction explicit.

2.1.2 The “uncompactified billiard”

Consider first the case when all the walls are switched on, as it occurs when no internal

dimension is compact [43]. This is also the case relevant when the BKL analysis is pushed

all the way to the singularity. The billiard region is then the smallest possible one in the

sense that the billiard region of all the other cases will contain the billiard region of the

uncompactified theory. We shall denote by ωA′ the dominant walls of the uncompactified

theory. While the number of dominant walls relevant to the compact cases might not be

equal to the dimension M of Mβ , it turns out that for all theories whose dimensional

reduction to three dimensions is described by a symmetric space, the number of dominant

walls is equal to M [12, 13, 10].

– 7 –
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In this case the dominant walls confine the billiard motion to the region Bβ ⊂ Mβ

defined by

Bβ =
{

β ∈ Mβ

∣

∣ ωA′(β) ≥ 0, A′ = 1, · · · ,M
}

, (2.11)

The billiard table is a simplex in Hm. We shall call somewhat improperly the region (2.11)

the “uncompactified billiard region” and its projection on Hm the “uncompactified billiard

table”.

The scalar products (ωA′ |ωB′) between the dominant walls can be organized into a

matrix,

AA′B′ =
2(ωA′ |ωB′)

(ωA′ |ωA′)
. (2.12)

In the noncompact case, the matrix A turns out to possess the properties of a Lorentzian

Cartan matrix [12, 10], thereby identifying the dominant wall forms ωA′ with the simple

roots of the Kac-Moody algebra g(A) constructed from A [17]. This Kac-Moody algebra

is the “overextension” u++ of the U-duality algebra u [13]. The group generated by the

reflections in the billiard walls of the uncompactified theory is a Coxeter group, which is

the Weyl group of the corresponding Kac-Moody algebra [12, 10]. We shall denote it by W.

The action of W on L+ splits up into a disjoint union of chambers, called Weyl cham-

bers. One of these chambers is defined by the inequalities ωA′ ≥ 0 and is called the

fundamental chamber F. Then, all other chambers in L+ correspond to images of F under

W. The action of W on the Weyl chambers is simply transitive. When projected onto

Hm, these chambers become m-simplices of finite volume. The fundamental chamber F is

the uncompactified billiard region in which the chaotic dynamics takes place. The m + 1

hyperplanes (or dominant walls) which bound the fundamental chamber, correspond to the

codimension-one faces of F when projected onto Hn (see also section 3.3.1).

2.2 Compactification and cohomology

Compactification can modify the billiard, as was shown in [43, 44]. This occurs because

the billiard dynamics in the intermediate regime considered here depends not only on the

p-form menu, but also on the topology of the space upon which the theory is formulated,

specifically on the de Rham cohomology Hp(M) of the compactification manifold M. The

rules for constructing the noncompact billiard system are given above, and here we focus

on the “selection rule” that describes how this billiard is modified after compactification.

2.2.1 Selection rule

We study situations in which all spatial dimensions are compact, and thus spacetime Σ

has topology

Σ = R × M, (2.13)

where M is closed, compact, and orientable. Electric and magnetic walls, e(β) and m(β),

arise from the electric and magnetic components, FE and FM , of a given p-form F . On a

compact manifold M the p-form fields which remain massless during the compactification

correspond to solutions of the equations of motion of the form

FE = fE(t)ωp ∧ dt, FM = fB(t)ωp+1, (2.14)

– 8 –
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where ωp and ωp+1 are representatives of the de Rham cohomology classes Hp(M) and

Hp+1(M), respectively. When M is compact, solutions that yield electric and magnetic

billiard walls can therefore only be found when the de Rham cohomology classes are non-

trivial.5

We may now state the influence of the topology of M on the billiard structure simply

in terms of a selection rule. This rule makes use of the Betti numbers bj(M), which are the

dimensions of the de Rham cohomology classes Hp(M). The selection rule reads [43, 44]:

• Selection Rule: When bs(M) = 0 for some s, we remove all billiard walls corre-

sponding to electric s-forms, or magnetic (s − 1)-forms.

The selection rule is established using the same assumptions as the noncompact BKL

analysis, namely that we are in a regime where classical gravity is valid, and studying a

sufficiently “generic” spacetime solution.

It has been known for some time that the algebraic structure of the billiard is invariant

under Kaluza-Klein reduction on tori [13]. The selection rule is compatible with these

results, since tori have no vanishing Betti numbers. Note also that none of the symmetry

walls (or gravity walls) is eliminated by the compactification. Hence, among the dominant

walls of the compactified theory we always have the (d − 1) dominant symmetry walls

β2 − β1, . . . , βd − βd−1.

2.3 Gram matrices and Coxeter groups

In order to understand the structure of the reflection group that emerges when some p-

form walls are switched off as well as the features of the corresponding billiard domain, it

is useful to recall a few facts about polyhedra and reflection groups in hyperbolic space.

The main reference for this section is [56].

2.3.1 Convex polyhedra

We shall consider convex polyhedra P of hyperbolic space, i.e., regions of the form

P =
N
⋂

s=1

H+
s , (2.15)

where H+
s is a half-space bounded by the hyperplane Hs, and N is the number of such

bounding hyperplanes. In our case, Hs is one of the walls of the relevant dominant wall

system,

Hs = {β ∈ Mβ | ωs(β) = 0}, (2.16)

5For more general compactifications with fluxes turned on, this simple argument does no longer hold

because then the massless spectrum is not determined only by the de Rham cohomology of M. Instead

one must consider a more complicated “twisted” cohomology (see, e.g., [60 – 62]). However, in our analysis,

these kinds of compactifications are actually trivial, since all p-forms are lifted and become massive. Hence,

the billiard dynamics will be controlled by the purely gravitational sector, or the gravity-dilaton sector if

dilatons are present. We thank Larus Thorlacius and Alexander Wijns for raising this issue, and for helpful

discussions.
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and H+
s is defined by

H+
s = {β ∈ Mβ | ωs(β) ≥ 0}. (2.17)

The polyhedra P therefore contain the fundamental domain (2.11), defined by the dominant

walls of the uncompactified theory. Hence it is clear that P has non-vanishing volume.

2.3.2 Relative positions of walls in hyperbolic space

It is customary to associate with the convex polyhedron P a matrix G(P ), the so-called

Gram matrix, which differs from the matrix A by normalization. The construction proceeds

as follows. To each hyperplane Hs we associate a unit spacelike vector es pointing inside

P , i.e., pointing towards the billiard region (which is thus defined by (β, es) ≥ 0). We then

construct the N ×N matrix G(P ) of scalar products (es|es′). Four cases can occur for the

scalar product (es|es′) between a given pair of distinct unit vectors es and es′ [56]:6

1. −1 ≤ (es|es′) ≤ 0. In this case, the hyperplanes Hs and Hs′ intersect and form an

acute angle. The limiting case (es|es′) = −1 means that the hyperplanes intersect

at infinity, i.e., are parallel. The other limiting case (es|es′) = 0 means that the

hyperplanes form a right angle, which is both acute and obtuse.

2. 0 ≤ (es|es′) ≤ 1. In this case, the hyperplanes also intersect, but form an obtuse angle.

The limiting case (es|es′) = 1 corresponds again to parallel hyperplanes meeting at

infinity.

3. (es|es′) < −1.

4. (es|es′) > 1.

In the latter two cases, the hyperplanes diverge, i.e., do not meet even at infinity. The

fourth case and the limiting case (es|es′) = 1 (s 6= s′) are excluded from our analysis,

because the geometry defined by the relevant electromagnetic walls has a metric which

is positive semi-definite, so that one can have (es|es′) ≥ 1 only if one of the walls is the

(dominant) gravitational wall. But this cannot arise, as shown by our analysis of scalar

products involving the gravitational wall in section 3 (taking into account the normalisation

of the simple roots).

We denote the dihedral angle between the hyperplanes Hs and Hs′ by H+
s ∩H+

s′ . When

the hyperplanes intersect, the value of the dihedral angle H+
s ∩H+

s′ can be found from the

relation

cos(H+
s ∩ H+

s′ ) = −(es|es′). (2.18)

2.3.3 Acute-angled polyhedra

If the number of dominant walls is strictly smaller than the dimension M of Mβ, the billiard

table in Hm has infinite volume and the motion is non-chaotic. After a finite number of

collisions, the billiard ball escapes to infinity [6, 57]. We shall therefore assume that the

6Note that one cannot have es = −es′ since then the region H+
s ∩H+

s′ = Hs has vanishing volume, which

is excluded as we observed above.
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number of dominant walls is greater than or equal to the dimension M of Mβ, a case that

needs a more detailed analysis. The Gram matrix is then of rank M because among the S

dominant wall forms, one can find a subset of M of them that defines a basis, namely the

(d − 1) symmetry walls and one of the other dominant walls if there is no dilaton (or two

linearly independent dominant non-symmetry walls if there is a dilaton etc.). The convex

polyhedron defined by the dominant walls is therefore non-degenerate (see [56]). We shall

also assume that the Gram matrix is indecomposable (cannot be written as a direct sum

upon reordering of the ei’s), as the decomposable case can be analysed in terms of the

indecomposable one.

If the number of dominant walls is exactly equal to M , the billiard table is a simplex

in hyperbolic space. Otherwise, one has a non-simplex billiard table, with the number of

faces exceeding dim Hn + 1 = n + 1.

A crucial notion in the study of reflection groups is that of acute-angled polyhedra. A

convex polyhedron is said to be acute-angled if for any pair of distinct hyperplanes defining

it, either the hyperplanes do not intersect, or, if they do, the dihedral angle H+
s ∩H+

s′ does

not exceed π
2 . The Gram matrix, which has 1’s on the diagonal, has then negative entries

off the diagonal. While non-degenerate, indecomposable acute-angled polyhedra on the

sphere or on the plane are necessarily simplices, this is not the case on hyperbolic space.

2.3.4 Coxeter polyhedra and the billiard group

We have seen that the dynamics of gravity is described in all cases (uncompactified or

compactified) by the motion of a billiard ball in a region of hyperbolic space. The reflections

ss (s = 1, . . . , N) with respect to the billiard walls generate a discrete reflection group which

we want to characterize. This group, which we shall call the billiard group and denote by

B, is a subgroup of the Coxeter group relevant to the uncompactified case, where the total

number of walls is maximum and the billiard region the smallest (and contained in all

other billiard regions). The billiard group is a crystallographic Coxeter group since it is

generated by reflections [56] and since it preserves the root lattice of the Kac-Moody algebra

of the uncompactified case. Its presentation in terms of the billiard walls might, however,

be non-standard. The billiard group B will be examined more carefully in sections 3.2.2

and 3.2.3.

The billiard table has an important property which it inherits from the complete wall

system of the theory. Consider the dihedral angle H+
i ∩ H+

j between two different walls

Hi and Hj that intersect. If this angle is acute, then it is an integer submultiple of π,

i.e., of the form π/mij where mij is an integer greater than or equal to 2. If this angle

is obtuse, then π − H+
i ∩ H+

j is an integer submultiple of π, i.e., π − H+
i ∩ H+

j = π/mij ,

where mij ∈ Z≥2. If the walls do not intersect, they are parallel and one has mij = ∞.

Thus, given any pair of distinct walls, one can associate to it an integer mij = mji ≥ 2.

In the case when all the angles are acute, and hence integer submultiples of π, the

polyhedron is called a Coxeter polyhedron. Coxeter polyhedra are thus acute-angled. In

hyperbolic space, they may or may not be simplices.
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3. General results

In this section we describe our new results concerning general features of the billiard struc-

tures after compactification. In section 3.1, we use features of the wall system to explain

why the billiard table need not be a Coxeter polyhedron after compactification. In sec-

tion 3.3 we describe the billiard region after compactification in terms of galleries, which

we explain. Finally, we describe in section 3.4 our methods for determining the chaotic

properties for all possible compactifications.

3.1 Rules of the game

We show why the billiard region need not be a Coxeter polyhedron after compactification

with the aid of two facts about billiard wall systems:

• Fact 1: If both an electric and a magnetic wall are present for a given p-form, then

the gravitational walls are subdominant. This was proven in [38, 13], by noticing that

for any p we have

Gijk = e
[p]
r1···rp + m

[p]
s1···sd−p−1

, (3.1)

where one of the rq and one of the sq are equal to i, and neither j nor k appears in

either the rq or sq.

• Fact 2: The inner product between a dominant gravitational wall and a dominant

p-form wall is unity for

– electric walls with p ≤ D − 3,

– magnetic walls with p ≥ 1,

and the inner product vanishes for

– electric walls with p = D − 2,

– magnetic walls with p = 0.

Typically, p forms with p > ⌊D/2⌋−1 are dualised so that we may safely assume that

p ≤ ⌊D/2⌋ − 1. (This is a stronger condition than p ≤ D − 3 for D ≥ 4). Then, we

have that the inner product between gravitational and p-form walls is always positive,

except when the p-form is a scalar (axion) and the inner product vanishes. This fact

is proven by computing the relevant inner products (which are independent of the

dilaton coupling(s) of the p-form) using the metric between wall forms.

This fact is significant in combination with the requirement that a system of dominant

walls define an acute-angled polyhedron if the inner products between each pair of

walls are either zero or negative. Therefore we can conclude:

If the dominant wall set includes a gravitational wall and any non-scalar p-form wall,

then the dominant wall system does not define a Coxeter polyhedron.
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For compactifications on tori, only Fact 1 is relevant since all components of the same

p-forms are preserved in the compactification [13]. Hence, electric and magnetic walls are

always present in pairs, ensuring that the gravity wall is always subdominant. More general

compactifications can eliminate one of the electric or magnetic walls of a given p-form, while

leaving the other intact. Unlike the noncompact case, it is possible for both gravitational

and p-form walls to appear simultaneously in the set of dominant walls. Fact 2 tells us

that when this happens, we no longer have a Coxeter polyhedron.

In our analysis, we never eliminate gravitational walls (although there are some partial

results regarding their selection rules that were given in [43]). This means that after

compactification there is always a gravitational wall in the root system, though it is not

necessarily dominant. Therefore all compactifications we study fall into one of three classes:

• A pair of electric and magnetic walls from the noncompact theory has not been elim-

inated by compactification, so the gravitational wall is subdominant. The resulting

billiard table may be a Coxeter polyhedron, depending on the details of the p-form

menu and couplings in the theory. (Example: the b1 = 0 compactification of the Bn

sequence, see section 4.)

• One (or both) members of each pair of electric/magnetic walls are eliminated, so the

gravitational wall is exposed. If there are any other p-form walls left, because of Fact

2, the billiard table cannot be a Coxeter polyhedron. (Example: the b3 = 0 compact-

ification in the E8 sequence.) However, it may occur that “coincidentally” two walls

from different p-forms can combine and make the gravitational wall subdominant.

• All of the p-form walls are eliminated by compactification, and so only the gravita-

tional wall is left. In this case one always obtains A++
n , the billiard corresponding

to pure gravity. This billiard sits at the bottom of every list when all possible Betti

numbers are set to zero. Occasionally there are also direct summands corresponding

to scalar fields that are never eliminated by compactification. (Example: b1 = b2 = 0

for Cn, with n > 4, as a billiard described by A++
1 × Cn−1.)

Only the first of the cases described above arises in the noncompact theory, where

gravitational walls are never dominant, except when they are the only non-symmetry walls.

3.2 Describing the billiard group after compactification

We shall now begin to assemble the various structures described so far in order to analyze

the group-theoretical properties of the billiard dynamics after compactification. This in-

volves understanding the relation between the billiard table and the fundamental domain

of the associated reflection group. In this context it is important to distinguish between

the formal Coxeter group and the billiard group. We consider these concepts in turn in

the following two sections, and explain how they are related in section 3.2.3.

3.2.1 The formal Coxeter group

Recall from section 2.3.4 that the reflections si with respect to the dominant walls Hi

generate a Coxeter group. To describe this group we must characterize the relations among
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the reflections si. Being reflections, they clearly satisfy

s2
i = 1. (3.2)

Consider next the reflections si and sj with respect to two different hyperplanes Hi and

Hj . Then, the product sisj is a rotation by the angle 2π
mij

(where the integers mij were

introduced in section 2.3.4) and so

(sisj)
mij = 1. (3.3)

These relations alone define a Coxeter group, which we shall call the formal Coxeter

group C associated with the billiard. One can describe C more precisely as follows. Let C̃

be the group freely generated by the elements of the set S = {r1, . . . , rN}, and let N be the

normal subgroup generated by (rirj)
mij , where the Coxeter exponents mij satisfy [17, 58]

(see also [59])

mii = 1,

mij ∈ Z≥2, i 6= j,

mij = mji. (3.4)

Then C is defined as the quotient group C̃/N and has the following standard presentation:

C = 〈r1, . . . , rn | (rirj)
mij = 1, i, j = 1, . . . , N〉 . (3.5)

One can associate a Coxeter graph with the formal Coxeter group, i.e., with the set of

mij ’s. Each ri defines a node of the Coxeter graph, and two different nodes i and j are

connected by a line whenever mij > 2, with mij explicitly written over the line whenever

mij > 3 [58]. To a Coxeter graph, one can further associate a symmetric matrix defined by

Bij = − cos
( π

mij

)

(3.6)

with 1’s on the diagonal and non-positive elements otherwise.

3.2.2 The billiard group and its fundamental domain

In section 2.3.4 we introduced the concept of the billiard group B. Here we shall elaborate

on this object and elucidate the structure of its fundamental domain.

The billiard group B is defined as the group generated by the reflections si with respect

to the dominant walls of the billiard table. This group coincides with the formal Coxeter

group C (with ri ≡ si) if and only if there are no additional relations among the si’s. Two

cases must be considered.

1. Acute-angled billiard tables. There is no additional relations among the si’s if

and only if the billiard table is acute-angled, i.e., is a Coxeter polyhedron [56]. In

that case, the matrix B = (Bij) coincides with the Gram matrix G(P ). Furthermore,

the billiard table is a fundamental domain [56].
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In the hyperbolic case relevant here, the billiard table need not be a simplex. When it

is a simplex, however, there is further structure. The Gram matrix is non-degenerate

and the action of the Coxeter group on the β-space Mβ coincides with the standard

geometric realization considered in [58]. In addition, the matrix

Ass′ =
2(ωs|ωs′)

(ωs|ωs)
, (3.7)

has non-positive integers off the diagonal and hence is a non-degenerate Cartan ma-

trix. It is obvious that the off-diagonal entries are integers since the walls correspond

to some roots of the Kac-Moody algebra of the uncompactified case. Moreover, it

follows from the fact that the billiard table is acute-angled that they are negative.

The billiard group is then the Weyl group of a simple Kac-Moody algebra.7 When

the matrix A is a Cartan matrix, one can associate to it a Dynkin diagram.

2. Non acute-angled billiard tables. If the billiard table is not acute-angled (and

hence not a Coxeter polyhedron), there are further relations among the si’s and

the billiard group is therefore the quotient of the formal Coxeter group C by these

additional relations. Moreover, the billiard table is not a fundamental domain of

the billiard group. One may understand this feature as follows. Consider a dihedral

angle H+
i ∩ H+

j of the polyhedron that is obtuse. The rotation sisj by the angle

2π/mij is an element of the group and hence maps reflection hyperplanes to reflection

hyperplanes. The image by this rotation of Hj is the hyperplane siHj that intersects

the interior of the billiard table.8 The reflection sisjsi with respect to this hyperplane

belongs to the group, and hence the billiard table cannot be a fundamental region

of the billiard group since the orbit of a point sufficiently close to siHj intersects

the billiard table at least twice. Fundamental regions are obtained by considering

all the mirrors (reflection hyperplanes) associated with the group (most of which are

not billiard walls), which decompose the space into equivalent chambers that are

permuted by the group (homogeneous decomposition). Each of these chambers is

a fundamental domain. The billiard group B is generated by the reflections in the

mirrors of the fundamental domain, which provide a standard presentation of the

group, and the billiard table is a union of chambers [56]. Examples of the occurrence

of this phenomenon will be discussed below.

Although the billiard table is not a fundamental domain, it can be naturally described

as a gallery defined by the Coxeter group of the uncompactified theory. This is

described in section 3.3.2.

7In the case of a non-simplex, acute-angled billiard table, the matrix A is also a valid Cartan matrix,

but it is degenerate and the corresponding Kac-Moody algebra is not simple. Furthermore, the standard

geometric realization is defined in a space of dimension larger than M , while the billiard realization is

defined in the M -dimensional β-space.
8When the Coxeter group is crystallographic (mij ∈ {2, 3, 4, 6}), the converse is also true: if the angle

between Hi and Hj is acute, then the image siHj does not intersect the interior of the billiard table.
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3.2.3 Non-standard presentations of Coxeter groups

We have seen how one can associate a formal Coxeter group C to the billiard region using

the Coxeter presentation C = C̃/N. The billiard group B — which is also a Coxeter group

— differs from C when the billiard table possesses obtuse angles because the reflections

in the walls of the billiard then fulfill additional relations. This yields a non-standard

presentation of the billiard group, which can be formally described as follows.

Let Bβ be the billiard region after compactification, let the elements of the set S =

{si | i = 1, . . . , N} be the reflections in the walls Wi bounding Bβ, and let C̃ be the formal

group freely generated by S. The dihedral angles between the Wi give rise to a set of

Coxeter exponents mij, with associated normal subgroup N ⊂ C̃. Suppose now that the

region Bβ is not a fundamental domain of B, and denote by J the normal subgroup of C̃

generated by (sisj)
mij and any other non-standard relations between the elements of S.

Note that we have N ⊂ J. The billiard group B is then the quotient

B = C̃/J. (3.8)

Equivalently, if we denote by F the normal subgroup of the formal Coxeter group C gen-

erated only by the non-standard relations between the elements of S, we may describe the

billiard group as

B = C/F. (3.9)

Neither of these presentations is a Coxeter presentation.

In all cases we consider in this paper, the uncompactified billiard is described by the

Weyl group W[u++] of a Lorentzian Kac-Moody algebra u++. For general compactifica-

tions, the billiard group B is therefore a Coxeter subgroup of W[u++]. However, we shall

also see examples of cases when the formal Coxeter group C after compactification differs

from u++, while the billiard group B is actually isomorphic u++, with a non-standard

presentation. This is described in detail in section 4.2.

3.3 Fundamental domains, chamber complexes and galleries

We have seen that the billiard table need not be a Coxeter polyhedron upon compactifica-

tion. When it is not a Coxeter polyhedron, it no longer corresponds a fundamental domain

of the billiard group B. Moreover, B is the quotient by nontrivial extra relations of the

formal Coxeter group associated with the billiard table. In this section, we describe how

the billiard region relevant to the compactified case can then be built as a union of images

of the uncompactified billiard region. This is achieved using the theory of buildings, in

terms of chambers and galleries.

3.3.1 Chambers and galleries

The analysis in this section makes use of the treatment of Coxeter groups as a theory of

buildings, a formalism mainly developed by J. Tits. Introductions and references may be

found in [63, 64].

The basic idea is to study Coxeter groups in geometric language by defining them in

terms of the objects on which they act nicely. The buildings are the fundamental objects

– 16 –



J
H
E
P
0
9
(
2
0
0
8
)
0
5
2

Figure 1: A simplicial complex of 2-simplices (triangles). The two shaded regions represent

adjacent (maximal) simplices.

which then defines the associated Coxeter group. For example, finite Coxeter groups act

on so-called spherical buildings, because these groups preserve the unit sphere. We are

interested in Coxeter groups which act on hyperbolic buildings, i.e., hyperbolic Coxeter

groups, which preserve the hyperbolic space.

An n-simplex X in hyperbolic space is determined by its n + 1 vertices. A 1-simplex is

determined by its two endpoints, a 2-simplex (a triangle) is determined by its three vertices

etc. For this reason, it is convenient to identify an n-simplex X with the set of its n + 1

vertices, X = {set of n + 1 vertices}. A face f of X is a simplex corresponding to a non-

empty subset f ⊂ X. The codimension of f with respect to X is given by dim X − dim f .

For example, there are three codimension-one faces in a 2-simplex, which are the three

edges of the triangle.

Next we define the notion of a simplicial complex. Let V be a set of vertices, and K a

set of finite subsets Xk ⊂ V . We assume that the subsets containing a single vertex of V

are all elements of K. Then K is called a simplicial complex if it is such that given X ∈ K

and a face f of X, then f ∈ K. The elements Xk of K are the simplices in the simplicial

complex. Two simplices X1 and X2 of the same dimension in K are called adjacent if

they share a codimension-one face, i.e., if they are separated by a common wall. Figure 1

illustrates a simplicial complex of 2-simplices.

A maximal simplex C in K is such that C does not correspond to the face of another

simplex in K. Maximal simplices in a simplicial complex are called chambers and they

shall be our main objects of study. A sequence of chambers C1, . . . ,Ck, such that any

two consecutive chambers Ci and Ci+1 are adjacent is called a gallery Γ. Thus, a gallery

corresponds to a connected path between two chambers C1 and Ck in K, and we write

Γ : C1,C2, . . . ,Ck−1,Ck. (3.10)

The length of Γ is k, and the distance between C1 and Ck is the length of the shortest

gallery connecting them. If any two chambers in K are connected by a gallery, then the
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Figure 2: A chamber complex with a gallery Γ : C1, . . . , C9, represented by the shaded region. The

length of the gallery is k = 9, which is also the distance between C1 and C9 since Γ is the shortest

gallery connecting C1 and C9.

simplicial complex is called a chamber complex. A simple example of a gallery inside a

chamber complex is displayed in figure 2.

3.3.2 The billiard region as gallery

We describe the billiard regions of compactified gravity-dilaton-p-form theories in the lan-

guage presented above. This is achieved by expressing them in terms of the billiard region

of the uncompactified theory (or compactified on a torus) which we recall is the funda-

mental Weyl chamber F of the Weyl group W[u++] of the Kac-Moody algebra u++, whose

Cartan matrix is defined through the scalar products between the dominant wall forms.

Compactification amounts to a process of removing dominant walls, and so the billiard

table is enlarged. The inequalities ωA′ ≥ 0 associated with the simple roots of the under-

lying Kac-Moody algebra are indeed replaced by weaker inequalities. The bigger region so

defined can be written as a union of Weyl chambers of W[u++]. We shall illustrate this

phenomenon on the example of the familiar Lie algebra A3, whose Weyl group is a spherical

Coxeter group. The fundamental Weyl chamber F is defined by

ω1(β) ≥ 0, ω2(β) ≥ 0, ω3(β) ≥ 0, (3.11)

corresponding to the three simple roots. The non simple roots are ω1 + ω2, ω2 + ω3 and

ω1+ω2+ω3. Suppose that the single dominant wall W1 defined by ω1(β) = 0 is suppressed.

Effectively, this implies that the particle geodesic may cross the wall W1. Thus it moves

from the region where ω1(β) ≥ 0 into the region where

ω1(β) ≤ 0. (3.12)

We shall consider two cases. (i) The new billiard region is defined by

ω1(β) + ω2(β) ≥ 0, ω2(β) ≥ 0, ω3(β) ≥ 0, (3.13)
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i.e., the wall W1 is replaced by the wall ω1(β) + ω2(β) = 0; (ii) In the second case, we

suppose that also the wall defined by ω1(β) + ω2(β) = 0 is suppressed. Then the new

billiard region is defined by the inequalities

ω1(β) + ω2(β) + ω3(β) ≥ 0, ω2(β) ≥ 0, ω3(β) ≥ 0 (3.14)

i.e., the wall W1 is replaced by the wall ω1(β) + ω2(β) + ω3(β) = 0.

In the first case, one can write the new billiard region as the union F ∪ A2 where A2

is defined by the inequalities

ω1(β) ≤ 0, ω1(β) + ω2(β) ≥ 0, ω3(β) ≥ 0 (3.15)

(which imply ω2(β) ≥ 0). The region A2 is the Weyl chamber obtained by reflecting the

fundamental Weyl chamber across the wall W1 since

s1(ω1) = −ω1,

s1(ω2) = ω1 + ω2,

s1(ω3) = ω3. (3.16)

Hence,

s1 · F = {β ∈ h | ω1(β) ≤ 0, (ω1 + ω2)(β) ≥ 0, ω3(β) ≥ 0} = A2. (3.17)

A reflection of this type which maps a chamber C to an adjacent chamber C′ is known as

an adjacency transformation [56]. By removing the single dominant W1, we therefore get

in the first case a new region which is precisely twice as large as the original fundamental

region.

In the second case, although we also remove a single dominant wall of the original

billiard, we get a larger region. This is because we also remove the subdominant wall

ω1(β) + ω2(β) = 0 which is exposed once W1 is removed. Indeed, the new billiard region

can now be written as the union F ∪ A2 ∪ A3 where A3 is defined by the inequalities

ω2(β) ≥ 0, ω1(β) + ω2(β) ≤ 0, ω1(β) + ω2(β) + ω3(β) ≥ 0 (3.18)

(which imply ω1(β) ≤ 0 and ω3(β) ≥ 0). The region A3 is again a Weyl chamber, obtained

from A2 by acting with the reflection s with respect to ω1 + ω2 since

s(−ω1) = ω2

s(ω1 + ω2) = −(ω1 + ω2),

s(ω3) = ω1 + ω2 + ω3. (3.19)

Hence,

s · A2 = {β ∈ h | ω2(β) ≥ 0, (ω1 + ω2)(β) ≤ 0, ω1(β) + ω2(β) + ω3(β) ≥ 0} = A3. (3.20)

Note that A2 and A3 are adjacent. Thus, while in the second case we also remove a

single dominant wall, we now obtain a region three times larger than the fundamental
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Figure 3: Here we illustrate a gallery Γ : C1, C2, C3 of length 3 for the case of the hyper-

bolic Kac-Moody algebra A++
1 . The two walls W0 and W−1 are associated with the affine and

overextended simple roots α0 and α−1, respectively. The original fundamental Weyl chamber

C1 = {h ∈ h | α1(h) ≥ 0, α0(h) ≥ 0, α−1(h) ≥ 0} corresponds to the leftmost shaded region. We

have removed the wall W1 = {h ∈ h | α1(h) = 0} as well as the wall (α0 + α1)(h) = 0. The far end

of the billiard region is now bounded by the new wall W̃1 = {h ∈ h | (2α0 + 3α1)(h) = 0}. Each of

the three chambers is clearly a copy of the fundamental chamber, and the total region is of finite

volume. See, e.g., [65, 59] for more detailed discussions of the Weyl group of A++
1 .

Weyl chamber. This new region can be described as a union of three pairwise adjacent

Weyl chambers. In figure 3 we describe pictorially a similar example for the case of the

hyperbolic Coxeter group A++
1 .

By extrapolating this analysis to the general case where we remove an arbitrary number

r ≤ n + 1 of dominant walls, we may conclude that the new billiard region corresponds to

a union of images of the fundamental Weyl chamber. This naturally has the structure of

a simplicial complex, and moreover, by a suitable ordering of the chambers, one sees that

it corresponds to a gallery covering the whole complex.9 In conclusion, we have found the

following: the billiard region B obtained by compactification on a manifold of non-trivial

topology is described by a gallery Γ inside the Cartan subalgebra h of the original hyperbolic

Kac-Moody algebra g.

The dynamics after compactification is chaotic if the new billiard region is a finite

union of images of the fundamental chamber, i.e., if the gallery Γ has finite length, while if

this union is infinite the particle motion will eventually settle down in a single asymptotic

Kasner solution, and chaos is removed. Since the Coxeter reflections preserve the volume,

the volume of B is

vol B = k · vol F, (3.21)

where k is the length of the gallery Γ associated with B.

9A similar gallery-type structure was recently uncovered in a very different physical context in [66].
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Figure 4: Some examples of the wall systems and their chaotic properties: (a) the wall system

corresponding to a hyperbolic Kac-Moody algebra, (b) the wall system of a non-hyperbolic Kac-

Moody algebra, or one for which the coweight construction is possible, (c) a wall system with fewer

walls than the dimension of the β-space.

3.4 Determining the chaotic properties after compactification

The selection rules described in section 2 provide a straightforward means to determine

the billiard system after compactification. Determining whether or not this billiard system

is chaotic, i.e., computing the biliard table volume, is somewhat more involved because

finding explicitly the corresponding galleries might be intricate. In most cases it is possible

to answer this question purely analytically without working out the gallery, although there

are several different techniques that work for different types of billiard system. In this

section we describe the various methods we employ.

The simplest case is when the billiard table is a Coxeter simplex. The matrix Āab

is then a Cartan matrix. The associated Kac-Moody algebra g(Ā) is by construction

a regular subalgebra10 of the Kac-Moody algebra g(A), whose Weyl group controlled the

uncompactified billiard. The dynamics of the compactified billiard is described by the Weyl

group W̄ of g(Ā), and the billiard region B̄ coincides with the fundamental domain F̄ of W̄.

Thus, if g(Ā) is hyperbolic, then B̄ is of finite volume, yielding chaotic dynamics. If the

Kac-Moody algebra g(Ā) is Lorentzian but not hyperbolic, then the billiard is non-chaotic.

This is illustrated in figure 4.

In many cases the billiard table is a simplex, but some dihedral angles are obtuse

(positive inner product between two different walls) and the matrix Aab is not a proper

Cartan matrix. It is however non-degenerate, so that it is possible to define a set of

dominant “coweights” ΛA′µ such that

ωA′µΛB′µ = δB′
A′ , (3.22)

where ω is a dominant wall labelled by A′. As in the standard Kac-Moody algebra case,

these “coweights” span the space of rays that lie within the wall cone, provided we only

10A subalgebra ḡ ⊂ g is regularly embedded in g if and only if two conditions are fulfilled: (i) the root

vectors of ḡ are root vectors of g; and (ii) the simple roots of ḡ are real roots of g. Moreover, the embedding

is positive regular if the positive root vectors of ḡ are positive root vectors of g. See, e.g., [65, 67] for more

detailed discussions on regular subalgebras of Kac-Moody algebras.
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Figure 5: The figure illustrates a non-simplex billiard table. To determine whether the theory is

chaotic, it is sufficient to locate a spacelike ray. This is equivalent to maximising the Lorentzian

norm on the unit sphere surrounding the origin.

combine “coweights” using non-negative coefficients. A non-chaotic solution to the equa-

tions of motion, which corresponds to a null ray within the wall cone, exists if and only

if there is at least one timelike and one spacelike “coweight”. This condition is readily

checked once the “coweights” are in hand. This technique was employed in [44].

When the billiard table is not a simplex and the number of walls is less than the

dimension of Mβ , then the theory is not chaotic, essentially because there are too few walls

to prevent a ray from reaching infinity.

When the billiard table is not a simplex and the number of walls is greater than the

dimension of Mβ , the analysis becomes more complex. This situation is illustrated in

figure 5. One method to determine whether chaos is present is to successively remove

dominant walls until the billiard region is again a simplex. If there is (at least) one way to

do this such that the resulting structure is hyperbolic, then we can conclude that the full

region is of finite volume, since reinserting the walls that were removed can never render the

volume infinite. In a small number of cases, all wall removals lead to non-chaotic billiards

and one cannot conclude immediately whether or not the volume of the billiard table is

finite. Another method is then to search numerically for whether a spacelike direction in

the wall cone exists. We do this by maximising the Lorentzian norm of points on the unit

sphere that lie within the wall cone. If the maximal norm is negative, then no spacelike

direction exists and the system is chaotic.

Also, as we have described in section 3.3.1 and 4.2, it is sometimes possible to easily

compute the volume of the billiard region exactly by making use of certain properties of the

Weyl group W[g], associated with the uncompactified theory and construct the associated

gallery.

As a byproduct of the “coweight construction” mentioned above, we can easily prove

the following useful fact:

• Fact 3: Whenever the billiard is described by a direct product Bfin ×Bhyp of a finite

and a hyperbolic Coxeter group, then the dynamics is non-chaotic.
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This follows by noting that the metric is a direct sum of the metric of Bfin and that of

Bhyp so the coweights associated with each factor define orthogonal subspaces. Since the

coweights associated with the finite factor are spacelike, there will always exist at least one

spacelike intersection in the region inside the dominant walls. A different intuitive way to

see this is to recall that the volume of the fundamental Weyl chamber of the first factor is

finite after projection on the sphere and that of the second factor after projection on the

hyperboloid. Two projections are needed to have a finite volume but there is only one here

(on a hyperboloid living in the product space).

4. Selected examples

One of the main achievements of this paper is a complete list of billiard structures for

general compactifications of all maximally-oxidised theories whose U-duality groups are

split real forms. This is presented in full in appendix A, while in this section we present

detailed calculations for a selection of these cases in an effort to illuminate the general

results of the previous section. We have chosen examples that highlight some particularly

interesting or subtle issues in the analysis.

4.1 The F4-sequence

For the theory with U-duality algebra F4, the Kac-Moody algebraic structure is completely

preserved by compactification. The oxidation endpoint of this theory is D = 6 with field

content given by two scalar fields, a dilaton φ and an axion χ, two one-forms A±, a two-

form B and, finally, a two-form C with self-dual field strength G = ⋆G. The complete set

of walls was found in [13] and is reproduced below.11 We have the following electric walls:

e
[B]
ij (β) = βi + βj − φ, e

[C]
i (β) = βi + βj ,

e[χ](β) = φ, e
[A±]
i (β) = βi ± 1

2
φ, (4.1)

and magnetic walls:

m
[B]
ij (β) = βi + βj + φ, m

[C]
ij (β) = βi + βj ,

m
[χ]
ijkl(β) = βi + βj + βk + βl − φ, m

[A±]
ijk (β) = βi + βj + βk ∓ 1

2
φ. (4.2)

The subset of dominant walls is

α−1(β) ≡ s54(β) = β5 − β4, α0(β) ≡ s43(β) = β4 − β3,

α1(β) ≡ s32(β) = β3 − β2, α2(β) ≡ s21(β) = β2 − β1,

α3(β) ≡ e
[A−]
1 (β) = β1 − 1

2
φ, α4(β) ≡ e[χ](β) = φ. (4.3)

These correspond to the simple roots of F++
4 whose Dynkin diagram is displayed in table 5.

Thus, in the BKL-limit the billiard dynamics is controlled by the Weyl group of F++
4 and

since this is a hyperbolic Coxeter group, the theory exhibits chaotic behaviour.

11We have corrected some minor misprints in [13].
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We now analyze the billiard structure in the low-energy effective theory resulting from

compactification on an arbitrary five-dimensional manifold M5. Since we only have 1- and

2-forms in the Lagrangian, only the first, second and third Betti numbers will affect the

zero-mode spectrum after compactification.

4.1.1 The b1(M5) = 0 compactification

Compactification on a manifold M5 with vanishing first Betti number b1(M5) = 0, projects

out the dominant electric wall e
[A−]
1 (β). This pushes the electric wall e

[B]
12 (β) to become

dominant, and hence the third simple root α3(β) is replaced by

α̃3(β) = β1 + β2 − φ. (4.4)

This root is long, (α̃3|α̃3) = 2, and has non-vanishing negative scalar products with α1(β)

and α4(β),

(α̃3|α1) = (α̃3|α4) = −1. (4.5)

Hence, one can interpret it as a simple root of a new algebra. Since the fourth simple root

is short, (α4|α4) = 1, the resulting algebra is not simply laced, with the asymmetric part

of the Cartan matrix given by

A34 =
2(α̃3|α4)

(α̃3|α̃3)
= −1, A43 =

2(α4|α̃3)

(α4|α4)
= −2. (4.6)

The new set of simple roots gives rise to the Dynkin diagram of the hyperbolic Kac-Moody

algebra B++
4 , displayed in table 5. We may therefore conclude that the dynamics in the

BKL-limit (in the regime of intermediate asymptotic) remains chaotic after compactifica-

tion. The simple roots {α−1, α0, α1, α2, α̃3, α4} all correspond to real positive roots of F++
4

and therefore this indeed corresponds to a regular embedding of B++
4 into F++

4 ,

ḡ[b1] = B++
4 ⊂ F++

4 . (4.7)

This example thus exhibits a “jump” between two oxidation chains. After compactification,

the billiard structure is that of B++
4 , which usually is associated with the billiard of a

six-dimensional theory with p-form spectrum given by a dilaton, a Maxwell field and a

2-form. These two, seemingly different, theories exhibit identical behaviour in the BKL-

limit if the F4-theory is compactified on M5 with b1(M5) = 0. It is tempting to speculate

that the preserved algebraic structure reflects that this particular reduction is a consistent

truncation of the original theory.

4.1.2 The b1(M5) = b2(M5) = 0 compactification

We proceed with the analysis of the F4-sequence to reduction on a manifold with b1(M5) =

b2(M5) = 0. The original set of dominant walls is unchanged by taking M5 with b2(M5) =

0, b3(M5) = 0 or b2(M5) = b3(M5) = 0, so these constraints have no influence on the

chaotic behaviour. However, the combination of b1(M5) = 0 and b2(M5) = 0 drastically

changes the set of non-gravitational walls of the theory and so is sufficient to remove chaos.
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As we saw in the first case above, the constraint b1(M5) = 0 removes the dominant wall

e
[A−]
1 (β) and replaces it with the electric wall e

[B]
12 (β), resulting in the hyperbolic algebra

B++
4 . Now also the electric wall e

[B]
12 (β) is removed by the additional constraint b2(M5) = 0.

Actually, we also kill the magnetic walls of the axion χ and of the one-forms A± so it turns

out that the new dominant wall is the gravity wall G145(β), i.e.,

α̃3(β) = 2β1 + β2 + β3. (4.8)

This positive root can be interpreted as a simple root of a new algebra, and connects with

a single link to α0 and α2, resulting in the Dynkin diagram of A++
3 which is hyperbolic.

However, we also have the axion electric wall e[χ](φ) which has vanishing scalar product

with all the other simple roots and hence represents a disconnected A1-factor. The resulting

algebra is therefore the direct sum

ḡ[b1, b2] = A++
3 ⊕ A1 ⊂ F++

4 . (4.9)

Because of Fact 3 (section 3.4) this theory is non-chaotic.

4.2 The E7-sequence

The compactifications of the E7-theory considered here provide a complete counterpart to

the examples studied in the previous section since no compactification yields a Coxeter

simplex.12 Here we show explicitly that for these compactifications the dominant walls

of the massless p-form spectrum violate the conditions for a valid root system of a Kac-

Moody algebra. We study in detail the underlying Coxeter group and determine the

structure of the billiard table. We find that the billiard region after compactification is

not a fundamental domain, but corresponds to a gallery of finite length inside the Cartan

subalgebra of E++
7 . We also show that for both compactifications the billiard group B

corresponds to a non-standard presentation of E++
7 .

4.2.1 Dominant wall structure after compactification

The E7-sigma model oxidises to a non-supersymmetric consistent truncation of maximal

D = 9 supergravity with bosonic field content given by a dilaton φ, a Maxwell field A and

a 3-form C. The electric and magnetic walls are [13]:

e
[A]
i (β) = βi − 2

√
2√
7

φ, e
[C]
ijk(β) = βi + βj + βk +

√
2√
7
φ,

m
[A]
i1,...,i6

(β) = βi1 + · · · + βi6 +
2
√

2√
7

φ, m
[C]
ijkl(β) = βi + βj + βk + βl −

√
2√
7
φ.

(4.10)

12Except those compactifications which do not change the dominant walls at all.
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The dominant walls are

α−1(β) = s87(β) = β8 − β7, α0(β) = s76(β) = β7 − β6,

...
...

α4(β) = s32(β) = β3 − β2, α5(β) = s21(β) = β2 − β1,

α6(β) = e
[A]
1 (β) = β1 − 2

√
2√
7

φ, α7(β) = e
[C]
123(β) = β1 + β2 + β3 +

√
2√
7
φ.

(4.11)

The Dynkin diagram constructed from these simple roots coincides with the one of E++
7

and is shown in table 2.

The b1(M8) = 0 compactification. Taking an eight-dimensional internal manifold

M8 with vanishing first Betti number removes the dominant electric wall e
[A]
1 (β) and the

new dominant wall is the magnetic wall of the 3-form

α̃6(β) = m
[C]
1234(β) = β1 + β2 + β3 + β4 −

√
2√
7
φ. (4.12)

However, this positive root is not acceptable as a simple root of a Kac-Moody subalgebra

of E++
7 since its scalar product with α7 is positive,

(α̃6|α7) = 1. (4.13)

The billiard table has one obtuse dihedral angle. Although the dominant wall set does not

constitute a set of simple roots of a hyperbolic Kac-Moody algebra we may still compute

the associated dominant “coweights” (as described in section 3.4), and we find that they

are all timelike, revealing that the resulting dynamics is in fact chaotic.

The b3(M8) = 0 compactification. The case b2(M8) = 0 has no effect on the original

wall system so we proceed directly to b3(M8) = 0. The dominant electric wall e
[C]
123(β) is

projected out which leaves us with three possible candidates for the new dominant wall

m
[A]
123456(β) = β1 + · · · + β6 +

2
√

2√
7

φ

m
[C]
1234(β) = β1 + · · · + β4 −

√
2√
7
φ

G178(β) = 2β1 + β2 + · · · + β6. (4.14)

The gravity wall G178 is subdominant because it can be obtained as the linear combination

G178(β) = m
[A]
123456(β) + e

[A]
1 (β). (4.15)

For the remaining two walls it turns out that none can be obtained as an integral linear

combination in terms of the other walls. Hence, both walls m
[A]
123456 and m

[C]
1234 are actually

dominant. The full set of dominant walls therefore does not define a simplex. Furthermore,
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there is one obtuse dihedral angle. One cannot interpret the walls as simple roots of a valid

root system.

The resulting structure is best described by choosing m
[A]
123456 as a new simple root α̃7

and leaving the remaining magnetic wall m
[C]
1234 outside of the algebraic structure. Thus we

take

α̃7(β) = β1 + · · · + β6 +
2
√

2√
7

φ. (4.16)

This is a long root, (α̃7|α̃7) = 2, and has non-vanishing negative scalar products with α0

and α6,

(α̃7|α0) = −1, (α̃7|α6) = −1, (4.17)

implying that the new node in the Dynkin diagram is connected with a single link to nodes

0 and 6. This therefore gives the Dynkin diagram of A++
7 which is hyperbolic. Because

of the remaining magnetic wall m
[C]
1234 the complete set of dominant walls defines a nine-

dimensional bounded region, which is smaller than the fundamental domain of A++
7 , and

hence has also finite volume: adding the extra wall m
[C]
1234 can never render the volume of

the billiard infinite and therefore the dynamics is still chaotic.

The algebra A++
7 is usually associated with the billiard of pure gravity in D = 10

dimensions, so it is interesting that we here find an embedding of A++
7 into E++

7 which

involves both a magnetic and an electric simple root (although it does not describe the

complete dominant wall structure for this theory).

4.2.2 Non-standard presentations of E
++
7

For the compactifications studied in the previous section, there is no longer an interpreta-

tion of the wall structure in the reduced theory as simple roots of a Kac-Moody algebra.

The billiard reflections of the compactified theory, however, still generate the Coxeter group

E++
7 , although they do not provide a standard presentation.

Let si (i = −1, 0, 1, . . . , 7) denote the nine fundamental reflections of the Weyl group

E++
7 .13 As explained in section 2, this group is completely determined by its Coxeter

exponents mij, and the defining relations (sisj)
mij = 1. This gives the following Coxeter

presentation of E++
7 :

E++
7 =

〈

s−1, s0, s1, . . . , s7

∣

∣ (sisj)
mij = 1, i, j = −1, 0, 1, . . . , 7

〉

, (4.18)

where the Coxeter exponents mij follow from the dihedral angles of the fundamental Weyl

chamber of E++
7 and can be read off from its Coxeter graph/Dynkin diagram, displayed in

table 2.

The b1(M8) = 0 compactification. Consider now compactification on a mani-

fold M8 with b1(M8) = 0. After compactification, the dominant set of wall forms is

{α−1, α0, α1, . . . , α̃6, α7}. The new dominant walls give rise to a set of reflections

S = {s−1, s0, s1, . . . , s̃6, s7}. (4.19)

13As is common in the literature we refer to the crystallographic Coxeter group by the same name as for

the associated Kac-Moody algebra.
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Figure 6: The Coxeter graph of the formal Coxeter group C generated by the fundamental reflec-

tions s−1, s0, s1, . . . , s̃6, s7 of the billiard associated with b1(M8) = 0. The circles around the nodes

6̃ and 7 indicate that the dihedral angle between the associated walls is obtuse. The billiard group

B is a quotient of C and turns out to be E++
7 .

We wish to find which is the Coxeter group generated by these reflections, i.e., the corre-

sponding billiard group B. The formal Coxeter group C associated with these reflections

is determined by the Coxeter graph in figure 6 as the quotient group C = C̃/N, where N is

the normal subgroup generated by the relations among the elements of the freely generated

group C̃ as encoded in the Coxeter exponents defined by the Coxeter graph.

This is not the end of the story, though, because there are additional relations between

the generators, apart from the standard Coxeter relations. Indeed, the new fundamental

reflection s̃6 can be written in terms of the original reflections as follows

s̃6 = s7s3s4s5s6s5s4s3s7, (4.20)

which in turn can be inverted to obtain the old reflection s6 in terms of the new ones,

s6 = s5s4s3s7s̃6s7s3s4s5. (4.21)

This implies that there is one (independent) extra relation among the generators of the

billiard group B
(

s5s4s3s7s̃6s7s3s4s5s2)
2 = 1. (4.22)

This relation is inherited, via Eq. (4.21), from the relation (s6s2)
2 = 1 in the original

Coxeter group E++
7 . Consider the normal subgroup I of C generated by

(

s5s4s3s7s̃6s7s3s4s5s2)
2. (4.23)

Taking the quotient by this subgroup gives a group which is isomorphic to E++
7 ,

E++
7 = C

/

I (4.24)

since it contains all the fundamental reflections si (i = −1, 0, 1, . . . , 7) and their relations.

This is, however, a non-standard representation of the Coxeter group E++
7 .

We see therefore that after compactification the billiard dynamics is still controlled by

the hyperbolic Coxeter group E++
7 , albeit with a non-standard presentation. This indicates

that the Coxeter group structure is a more rigid structure which may survive even when

the billiard table is not the original Coxeter polyhedron.
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Figure 7: The Coxeter graph of the formal Coxeter group R generated by the fundamental reflec-

tions s−1, s0, s1, . . . , s6, s̄7 of the billiard associated with b3(M8) = 0 (leaving away the magnetic

wall m
[A]
123456). The circles around the nodes 7̄ and 6 indicate that the dihedral angle between the

associated walls is obtuse. The billiard group B is a quotient of R and turns out to be E++
7 .

The b3(M8) = 0 compactification. We now determine the Coxeter group of the

b3(M) = 0 compactification. It is convenient to initially leave the magnetic wall m
[A]
123456

outside of the analysis. Thus, we take

ᾱ7 = m
[C]
1234 = β1 + · · · + β4 −

√
2√
7
φ, (4.25)

as the new “simple root”. We denote the Coxeter group freely generated by the set

R = {s−1, s0, s1, . . . , s6, s̄7} by R̃, the normal subgroup defined by the Coxeter exponents

corresponding to the dihedral angles of the billiard table by P, and the corresponding

formal Coxeter group by R = R̃/P. The associated Coxeter graph is displayed in figure 7.

Similarly to the previous case we can express the original fundamental reflection s7 in

terms of the new ones as

s7 = s3s4s5s6s̄7s6s5s4s3. (4.26)

The relation (s7s2)
2 = 1 then induces the following relation among the generators of R:

(

s3s4s5s6s̄7s6s5s4s3s2

)2
= 1, (4.27)

which is not a standard Coxeter-type relation. Again, this implies that R has a normal

subgroup J, generated by
(

s3s4s5s6s̄7s6s5s4s3s2

)2
, (4.28)

and hence by taking the quotient by J we find yet another non-standard presentation of

E++
7 ,

E++
7 = R

/

J. (4.29)

Adding the reflection in the wall that has been dropped does not modify the result since this

reflection can in fact be expressed in terms of the other ones. Thus, this compactification

also preserves the Coxeter group E++
7 of the billiard, even though it yields a system of

walls that cannot be interpreted as the simple roots of E++
7 .

4.2.3 The volume of the billiard gallery in the case b1(M8) = 0

Here we give an explicit description of the billiard region as a union of images of the funda-

mental region under the Coxeter group of the noncompact theory, for the compactification
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with b1(M8) = 0 studied above. We compute the volume of the billiard gallery and show

that it is finite, which implies that the reduced theory is chaotic.

As usual, we associate a fundamental reflection si ∈ E++
7 to each of the simple roots of

E++
7 . As we have seen, the compactification with b1(M8) = 0 amounts to dropping the wall

located at α6(β) = 0 and replacing it by α̃6(β) = 0. Thus, one allows for the possibility

that the billiard ball moves on the negative side of the electric wall α6(β) = 0, i.e., to the

region α6(β) ≤ 0. One can go to that region from the fundamental Weyl chamber F of

E++
7 by performing a Weyl reflection in the electric wall which is removed. Starting from

the region B1 ≡ F, we shall thus apply the reflection s6 to all the bounding walls of B1.

The result is

s6(α6) = −α6 ⇐⇒ α6(β) ≤ 0,

s6(α5) = α5 + α6 ⇐⇒ (α5 + α6)(β) ≥ 0, (4.30)

with all other walls left invariant by s6. In this way we obtain a new region B2, defined by

the image of s6 on F, i.e.,

B2 = s6 · F
=

{

β ∈ h
∣

∣ α−1(β) ≥ 0, . . . , α4(β) ≥ 0, α7(β) ≥ 0, (α5 + α6)(β) ≥ 0, α6(β) ≤ 0
}

.

(4.31)

At this point we still have B1 ∪ B2 ⊂ B as a proper inclusion, i.e., we have not yet

covered all of B. To proceed we must also allow for the possibility that (α5 + α6)(β) ≤ 0,

which corresponds to performing a Weyl reflection in the wall (α5 + α6)(β) = 0. A quick

calculation reveals that the relevant reflection is the combination s5s6s5 ∈ E++
7 , as is

evident from

s5s6s5(α5 + α6) = −(α5 + α6). (4.32)

The remaining reflections which are affected by s5s6s5 are

s5s6s5(α4) = α4 + α5 + α6 ⇐⇒ (α4 + α5 + α6)(β) ≥ 0,

s5s6s5(α6) = −α5 ⇐⇒ α5(β) ≥ 0. (4.33)

We see that there is a new constraint (α4 + α5 + α6)(β) ≥ 0, and we obtain the region B3,

defined as

B3 = s5s6s5 · B2

=
{

β ∈ h
∣

∣ α−1(β) ≥ 0, . . . , α3(β) ≥ 0, α5(β) ≥ 0, α7(β) ≥ 0,

(α5 + α6)(β) ≤ 0, (α4 + α5 + α6)(β) ≥ 0
}

.

(4.34)

The next step is to allow for the possibility (α4 + α5 + α6)(β) ≤ 0, which corresponds to a

Weyl reflection with respect to the wall (α4 +α5 +α6)(β) = 0. The particular combination

of fundamental reflections corresponding to this reflection is s4s5s6s5s4 ∈ E++
7 ,

s4s5s6s5s4(α4 + α5 + α6) = −(α4 + α5 + α6). (4.35)
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The action of s4s5s6s5s4 on the remaining (non-invariant) walls of B3 yields

s4s5s6s5s4(α3) = α3 + α4 + α5 + α6 ⇐⇒ (α3 + α4 + α5 + α6)(β) ≥ 0,

s4s5s6s5s4(α5) = α5 ⇐⇒ α5(β) ≥ 0,

s4s5s6s5s4(α5 + α6) = −α4 ⇐⇒ α4(β) ≥ 0. (4.36)

As before, we see that a new constraint (α3 + α4 + α5 + α6)(β) ≥ 0 arises. Putting things

together we find that the region B4 is given by

B4 = s4s5s6s5s4 · B3

=
{

β ∈ h
∣

∣ α−1(β) ≥ 0, . . . , α2(β) ≥ 0, α4(β) ≥ 0, α5(β) ≥ 0, α7(β) ≥ 0,

(α4 + α5 + α6)(β) ≤ 0, (α3 + α4 + α5 + α6)(β) ≥ 0
}

.

(4.37)

Following the same route, we now allow for (α3 + α4 + α5 + α6)(β) ≤ 0. The associated

Weyl reflection is s̄ ≡ s3s4s5s6s5s4s3, which follows from

s̄(α3 + α4 + α5 + α6) = −(α3 + α4 + α5 + α6). (4.38)

The action of s̄ on B4 then yields

s̄(α2) = α2 + α3 + α4 + α5 + α6 ⇐⇒ (α2 + α3 + α4 + α5 + α6)(β) ≥ 0,

s̄(α4) = α4 ⇐⇒ α4(β) ≥ 0,

s̄(α5) = α5 ⇐⇒ α5(β) ≥ 0,

s̄(α7) = α3 + α4 + α5 + α6 + α7 ⇐⇒ (α3 + α4 + α5 + α6 + α7)(β) ≥ 0,

s̄(α4 + α5 + α6) = −α3 ⇐⇒ α3(β) ≥ 0.

(4.39)

Here we see that the new constraint (α3 + α4 + α5 + α6 + α7)(β) ≥ 0, replacing α7(β) ≥ 0,

coincides with the constraint α̃6(β) ≥ 0, associated with the new “simple root” α̃6 =

m
[C]
1234(β), and we may thus conclude that we have reached the far end of the region B.

However, we also uncover a new wall inequality (α2 + α3 + α4 + α5 + α6)(β) ≥ 0, arising

because of the “vertex” adjoining nodes 2, 4 and 7 to node 3 in the Dynkin diagram of

E++
7 (see table 2). The region B5 is thus given by

B5 = s̄ · B4

=
{

β ∈ h
∣

∣ α−1(β) ≥ 0, α0(β) ≥ 0, α1(β) ≥ 0, α3(β) ≥ 0, α4(β) ≥ 0,

α5(β) ≥ 0, (α3 + α4 + α5 + α6)(β) ≤ 0, (α2 + α3 + α4 + α5 + α6)(β) ≥ 0,

(α3 + α4 + α5 + α6 + α7)(β) ≥ 0
}

.

(4.40)

Although we have reached one edge of the region B, we have not yet exhausted it. To

proceed, we must reflect in the wall (α2 + α3 + α4 + α5 + α6)(β) = 0, for which the desired
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reflection is s2s3s4s5s6s5s4s3s2. We shall not display any more details of the calculations

but merely state the result. We obtain a new region B6, given by

B6 = s2s3s4s5s6s5s4s3s2 · B5

=
{

β ∈ h
∣

∣ α−1(β) ≥ 0, α0(β) ≥ 0, α2(β) ≥ 0, . . . , α5(β) ≥ 0,

(α2 + α3 + α4 + α5 + α6)(β) ≤ 0, (α1 + α2 + α3 + α4 + α5 + α6)(β) ≥ 0,

(α3 + α4 + α5 + α6 + α7)(β) ≥ 0
}

.

(4.41)

It is satisfactory to see that the far edge (α3 + α4 + α5 + α6 + α7)(β) ≥ 0 of the region B

is preserved. We proceed to reflect in (α1 + α2 + α3 + α4 + α5 + α6)(β) = 0, which yields

B7 = s1s2s3s4s5s6s5s4s3s2s1 · B6

=
{

β ∈ h
∣

∣ α−1(β) ≥ 0, α1(β) ≥ 0, . . . , α5(β) ≥ 0, (α1 + · · · + α6)(β) ≤ 0,

(α0 + · · · + α6)(β) ≥ 0, (α3 + α4 + α5 + α6 + α7)(β) ≥ 0
}

.

(4.42)

Proceeding in this fashion we find the two additional regions

B8 = s0s1s2s3s4s5s6s5s4s3s2s1s0 · B7

=
{

β ∈ h
∣

∣ α0(β) ≥ 0, . . . , α5(β) ≥ 0, (α0 + · · · + α6)(β) ≤ 0,

(α−1 + · · · + α6)(β) ≥ 0, (α3 + α4 + α5 + α6 + α7)(β) ≥ 0
}

,

(4.43)

and

B9 = s−1s0s1s2s3s4s5s6s5s4s3s2s1s0s−1 · B8

=
{

β ∈ h
∣

∣ α−1(β) ≥ 0, . . . , α5(β) ≥ 0, (α−1 + · · · + α6)(β) ≤ 0,

(α3 + α4 + α5 + α6 + α7)(β) ≥ 0
}

.

(4.44)

We see now that there is no longer any remaining wall to reflect in without ending up

outside of B. Thereby we have achieved our goal in covering all of B by a finite sequence

of chambers, and we have the union

B =
9

⋃

i=1

Bi. (4.45)

Since any two consecutive chambers Bi and Bi+1 are adjacent, the new billiard region is

naturally described by a gallery Γ connecting B1 with B9,

Γ : B1,B2, . . . ,B8,B9. (4.46)

The length of Γ is k = 9 so the volume of B is 9 · vol F, which is finite.
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5. Concluding remarks

We have presented the complete compactification analysis for all of the Einstein-dilaton-p-

form systems associated with split real forms of finite-dimensional Lie algebras. These are

the maximal oxidations of models whose U-duality groups in three spacetime dimensions

are finite simple Lie groups. We have extended previous studies of the billiards associated

with these models by including the effects of compactification on manifolds of nontriv-

ial topology, which influences the billiard system (relevant to the pre-Planckian regime)

through the zero-mode spectrum.

In most cases the algebraic interpretation of the dominant wall system as simple roots

of a Kac-Moody algebra is unavailable, but in all cases the Coxeter group structure is

preserved. This appears to indicate that the discrete symmetry groups revealed in the

BKL-limit are more rigid than the continous Kac-Moody symmetries. It is possible that

this fact is intimately related to the underlying quantum U-duality groups U(Z) which

indeed contain Coxeter groups as subgroups.

On the mathematical side we have found that compactification reveals interesting

new structures of the cosmological billiard. In particular, we showed that the geometric

reflections with respect to the dominant walls after compactification generate a Coxeter

group which generically is described by a non-standard presentation, this being closely

linked to the fact that the new billiard region is not a fundamental domain of the reflection

group. Using technology from the theory of buildings we also found that this billiard region

has a natural description as a gallery, i.e., an ordered sequence of Weyl chambers inside the

Cartan subalgebra of the overextended U-duality algebra u++, whose Weyl group controlled

the billiard dynamics before compactification.

One of the motivations for this work was to determine whether compactification on

topologically nontrivial manifolds may eliminate chaos, which would be favorable for big

crunch/big bang models which rely on smooth data during the collapse towards the singu-

larity [49 – 52]. Our results indicate that this can indeed be achieved for some compacti-

fications. For the E8-sequence, which is relevant for M-theory and IIA/IIB string theory,

chaos can be removed by taking an internal manifold M with b3(M) = b4(M) = 0. This

seems to imply that the simplest Calabi-Yau or G2-holonomy manifolds are unsuitable for

these constructions. For the heterotic string, whose billiard is described by B++
8 , chaos is

removed for cases where all spatial dimensions are compact, with the exception of those

for which only the first, or only the second, Betti number of the internal manifold van-

ishes. More generally, for models with no dilaton in dimensions ≤ 10, chaos cannot be

removed by the methods described here since the gravitational wall always remains and

pure gravity is known to be chaotic [5]. However, for models with no dilaton in dimension

> 10, or for models with dilatons, chaos can certainly be removed for example by dropping

all the wall forms since the resulting models are non-chaotic [5, 6, 68, 36, 38] (the axion

wall that remains in the case of F4 does not invalidate the conclusion). We anticipate that

these results will help to serve as a “selection principle” for future investigations of big

crunch/big bang transitions in a compact setting.

Although we have focussed on theories exhibiting split U-duality symmetries in three

– 33 –



J
H
E
P
0
9
(
2
0
0
8
)
0
5
2

dimensions, our analysis also applies to the case of non-split real forms. This is due to the

fact that when the U-duality algebra u is non-split, and the restricted root system of u is

reduced, the billiard dynamics is controlled by the overextension f++ of the maximal split

“subalgebra” f of u [16] (see also [59]). All the algebras f++ are part of the classification

considered here, and hence our results cover also these cases. The analysis can easily be

extended also to the few cases where the restricted root system of u is non-reduced.

Finally, we would like to mention that our work appears to be closely related to that

of [69, 70]. These authors consider an M-theory setup where all spatial dimensions are

compactified on certain Zn-orbifolds of T 10, i.e., where the spacetime manifold is of the

form R × T 10/Zn. The “moduli space” of M-theory on T 10 is described by the arithmetic

quotient E10(Z)\E10(R)/K(E10), and the orbifold projection reduces the global symmetry

to a subgroup G ⊂ E10. A surprising feature of the analysis of [70] is that for some

orbifolds the algebra g = Lie G is a Borcherds subalgebra of E10. We expect that a

similar phenomenon would occur in our analysis by allowing for internal manifolds of the

form M/Zn. For example, projecting out gravity walls would expose subdominant walls

associated with imaginary roots of E10, which could give rise to billiards controlled by

Borcherds algebras. Since the Weyl groups of Borcherds algebras are defined only with

respect to the real simple roots, and the walls corresponding to non-real simple roots are

lightlike, one might expect that chaos will always be removed for these cases.14 We leave

an investigation of this for future work.
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A. The complete classification

In this appendix we present the results obtained for all compactifications of the models

associated with finite simple Lie groups. The An series, representing pure gravity is not

affected by the compactifications we consider here and hence is not presented.

Note that the low-rank examples of the infinite families Bn and Dn must be treated

separately. This is because for compact orientable N -dimensional compactification mani-

14We thank Axel Kleinschmidt for discussions on this issue.
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folds we have bj = bN−j and so not all of the Betti numbers are independent. Therefore, we

cannot set independently to zero the Betti numbers relevant to the p-forms in the problem

when the dimension of space is “too small”. Accordingly, for these infinite families we

present the “large-n” and “small-n” cases in separate tables.

For each Einstein-p-form system and compactification, we give the Coxeter graph of

the formal Coxeter group associated with the billiard. Obtuse angles between the dominant

walls are indicated by circles around the corresponding nodes in the Coxeter graph. When

the billiard table is a Coxeter simplex we give the Dynkin diagram. Our wall conventions

follow those of [13]. The symmetry walls are numbered such that the one corresponding to

the overextended node has the highest power of the scale factors, i.e.,

α−1(β) = βn − βn−1, α0(β) = βn−1 − βn−2, . . . etc. (A.1)

The non-symmetry dominant walls are given separately for each case in the forthcoming

tables.

The computations in this section were carried out with the assistance of a custom

computer program, which is freely available for download at:

http://www.damtp.cam.ac.uk/user/dhw22/code/.
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{bi(M)

= 0}
Coxeter

group
Comments

Coxeter Graph of formal

Coxeter group / Dynkin

Diagram

Chaotic?

{ },
{b1},
{b2},
{b1, b2}

E++
6

The uncompactified case. The oxidation

endpoint is D = 8 and comprises a dila-

ton φ, an axion χ and a 3-form C. This

theory can be obtained as a truncation of

eleven-dimensional supergravity [54]. The

non-symmetry dominant walls are the elec-

tric walls of C and χ, α4(β) = β1+β2+β3−
φ/

√
2 and α5(β) =

√
2φ, respectively [13].

Yes

{b3},
{b2, b3},

X9

In this compactification only the electric and

magnetic walls of the axion χ are retained.

Because the scalar products between 0-form

walls and gravity walls are always zero (see

section 3.1), the axion walls and the grav-

ity wall can peacefully coexist in this case

while still giving rise to a Coxeter polyhe-

dron, which is not, however, a simplex. Its

Gram matrix is degenerate. The Coxeter

group X9 is therefore a non-simplex Coxeter

group in 7-dimensional hyperbolic space (9

faces). The matrix Ā is a valid Cartan ma-

trix. However, this Cartan matrix is degen-

erate, and hence the associated Kac-Moody

algebra g̃(Ā) is not simple [17]. In fact, it

contains a one-dimensional ideal i = Rk,

where k ∈ h ⊂ E++
6 is the linear combina-

tion of Cartan generators of E++
6 with coef-

ficients given by the components of the null

vector v which spans the kernel of Ā. See [67]

for a detailed discussion of this phenomenon.

Yes

{b1, b3},
{b1, b2,

b3}

A++
5 ×

A1

Here, only the electric wall of the axion is

retained, which has zero scalar product with

the gravity and symmetry walls. Hence,

the Coxeter group corresponds to the direct

product of the “pure gravity group” A++
5

and the group A1 generated by reflections in

the electric wall. The volume of the billiard

region is infinite.

No

Table 1: The E6-sequence. The leftmost column indicates which Betti numbers vanish.
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{bi(M)

= 0}
Coxeter

Group
Comments

Coxeter Graph of formal

Coxeter group / Dynkin

Diagram

Chaotic?

{ },
{b2},
{b1, b2}

E++
7

The uncompactified case. This theory oxi-

dises to D = 9 where it corresponds to a

consistent non-supersymmetric truncation of

maximal D = 9 supergravity. The field con-

tent includes a dilaton φ, and Maxwell field

A and a 3-form C [54]. The non-symmetry

dominant walls are the electric walls of A

and C, α6(β) = β1 − 2
√

2√
7

φ and α7(β) =

β1 + β2 + β3 +
√

2√
7

φ, respectively [13].

Yes

{b1} E++
7

Compactification on a manifold M with b1 =

0 projects out the dominant wall α6 and pro-

motes the magnetic wall form of the 3-form,

α̃6 = m
[C]
1234, to become dominant. The

resulting set of wall forms does not define

an acute-angled polyhedron. However, we

may still associate a Coxeter graph to this

wall system, which defines its formal Coxeter

group C. The group C has a normal subgroup

I, and taking the quotient by this subgroup

yields the billiard Coxeter group B, which

turns out to be the original Coxeter group,

E++
7 = C/I. Therefore the resulting dy-

namics is chaotic, even though the billiard

region does not correspond to the fundamen-

tal Weyl chamber of E++
7 . See section 4.2

for a detailed discussion of this compactifi-

cation.

Yes

{b3} E++
7

In this compactification the wall correspond-

ing to the simple root α7 is projected out.

There are two new dominant wall formS One

of them is again the magnetic wall form of

the 3-form, ᾱ7 = m
[C]
1234 . The other is the

wall form α̃7 = m
[A]
123456 . The billiard region

is a finite union of images of the fundamen-

tal region of E++
7 and hence the dynamics is

chaotic. The formal Coxeter group R associ-

ated with the (non acute-angled) polyhedron

defined by all dominant walls except α̃7 has

a normal subgroup J, and the quotient R/J

is again equal to E++
7 . See section 4.2 for a

detailed discussion of this compactification.

Yes

{b1, b3} D+++
6

This compactification is slightly subtle.

Both the magnetic walls m
[C]
1234 and m

[A]
123456

are now dominant, together with the gravity

wall G178 . Thus the polyhedron is not a sim-

plex and furthermore, the gravity walls in-

tersects the magnetic walls at obtuse angles.

The Coxeter graph displayed corresponds to

the wall system obtained by excluding the

gravity wall. The Coxeter group D+++
6 as-

sociated with this graph is not hyperbolic

(although it is of course Lorentzian). How-

ever, we have explicitly checked that the new

billiard region does not contain any spacelike

rays, and hence the dynamcis is nevertheless

chaotic. The reason is that the gravity wall

comes into play and “cuts” the fundamental

region of Y9 in such a way that it shields the

spacelike direction of escape and thus ren-

ders the total volume finite. It is notewor-

thy that a triple-extended Kac-Moody alge-

bra plays a role in the billiard structure.

Yes

Table 2: The E7-sequence.
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{bi(M)

= 0}
Coxeter

Group
Comments

Coxeter Graph of formal

Coxeter group / Dynkin

Diagram

Chaotic?

{b2, b3} E++
7

The compactification with b2 = b3 = 0 gives

rise to the same Coxeter group structure as

the b3 = 0 case. The additional constraint

b2 = 0 removes the magnetic wall m
[A]
123456 ,

while preserving the magnetic wall m
[C]
1234

and promoting the gravity wall G178 to a

dominant wall. Thus, excluding the gravity

wall, we find the formal Coxeter group R.

The quotient group R/J is again E++
7 , and

the resulting dynamics is chaotic.

Yes

{b1, b2,

b3, b4}
A++

6

In this compactification, all p-form walls are

projected out. In the absence of the dila-

ton (pure gravity), we would obtain a chaotic

system. However, because the oxidation end-

point of the E7-sequence includes a dila-

ton, which is never projected out, the result-

ing dominant wall system is not sufficient to

provide a finite volume billiard. This can

be seen from the fact that there are eight

dominant walls, corresponding to the eight

simple roots of A++
6 , while the total space

in which the dynamics takes place is nine-

dimensional. Hence, even though A++
6 is

hyperbolic, the billiard domain is of infinite

volume since there is always an extra “di-

mension” in which the particle may escape to

infinity. The compactification b1 = b2 = b3
gives rise to the same dynamics since the

magnetic wall which is preserved is not suf-

ficient to provide a finite volume billiard.

No

Table 3: The E7-sequence continued.

{bi(M)

= 0}
Coxeter

group
Comments

Coxeter Graph of formal

Coxeter group / Dynkin

Diagram

Chaotic?

{ } E++
8

The uncompactified case. The oxidation

endpoint is eleven-dimensional supergravity,

containing a 3-form potential C [54]. The

only non-symmetry dominant wall is the

electric wall of C, α8(β) = β1+β2+β3 [13].

Yes

{b3} E+++
7

This compactification renders the magnetic

wall of the 3-form dominant, while the elec-

tric wall is projected out. However, also

the gravity wall becomes dominant, imply-

ing that the billiard table is not a simplex,

and has obtuse angles. Excluding the grav-

ity wall, the reflections in the new domi-

nant walls give rise to the (non-hyperbolic)

Lorentzian Coxeter group E+++
7 . The fun-

damental Weyl chamber of E+++
7 is of infi-

nite volume, which would imply non-chaotic

dynamics. However, here the gravity wall

again comes in and shields the direction of

escape, rendering the total volume finite and

preserves the chaotic dynamcis. It is note-

worthy that a triple-extended Kac-Moody al-

gebra plays again a role in the billiard struc-

ture.

Yes

{b3, b4} A++
8

This corresponds to the standard scenario

when all of the p-form walls are projected

out. The billiard is the same as for pure

gravity in eleven dimensions, which is non-

chaotic since the Kac-Moody algebra A++
8

is not hyperbolic.

No

Table 4: The E8-sequence.
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{bi(M)

= 0}
Coxeter

Group
Comments

Coxeter Graph of formal

Coxeter group / Dynkin

Diagram

Chaotic?

{ }, {b2},
{b3},
{b2, b3}

F++
4

The uncompactified case. The oxidation

endpoint is D = 6 and the field content

is given by a dilaton φ, and axion χ, two

Maxwell fields A±, a 2-form B and a 3-

form potential C with self-dual field strength

G [54]. The non-symmetry dominant walls

are the electric walls of A− and χ, α3(β) =

β1 − φ/2 and α4(β) = φ, respectively [13].

Yes

{b1},
{b1, b3}

B++
4

This compactification renders the one-form

A− massive and hence projects out the as-

sociated electric wall ω3(β) = β1−φ/2. The

new dominant wall is the electric wall of the

2-form B, which reads ω̃3(β) = β1 + β2 − φ.

The new dominant wall may be identified

with the simple roots of the hyperbolic Kac-

Moody algebra B++
4 , and the reflections in

the faces of these walls generate the Weyl

group W[B++
4 ]. The billiard domain B co-

incides with the fundamental Weyl chamber

F of W[B++
4 ] and since this is of finite vol-

ume, the dynamics is chaotic. This case is

discussed in more detail in section 4.1.

Yes

{b1, b2},
{b1, b2,

b3}

A++
3 ×

A1

In this compactification, all p-form walls are

projected out, but the axion wall ω4 = φ is

always present. Therefore the resulting dom-

inant wall system is the standard one A++
3

of pure gravity in 6 dimensions, augmented

with the extra axion wall. Even though

A++
3 is hyperbolic, there exists a spacelike

coweight due to the finite A1-factor, and

therefore the dynamics is non-chaotic. This

case is discussed in more detail in section 4.1.

No

Table 5: The F4-sequence.

{bi(M)

= 0}
Coxeter

Group
Comments

Coxeter Graph of formal

Coxeter group / Dynkin

Diagram

Chaotic?

{}, {b2},
{b3}

G++
2

The uncompactified case. The oxidation

endpoint is 5-dimensional Maxwell-Einstein

gravity [54]. The connection between this su-

pergravity theory and G++
2 has also been ex-

tensively investigated in [71]. The only non-

symmetry dominant wall is the electric wall

of the Maxwell field A, α2(β) = β1 [13].

Yes

{b1} A++
2

This compactification simply renders the

one-form A massive and thus projects out

the electric wall ω2(β) = β1. The new

dominant wall is the gravity wall ω̃2(β) =

G134(β) = 2β1 + β2, and not the magnetic

wall m
[A]
123(β) = β1 + β2 + β3, since we have

m
[A]
123(β) = G134(β)+ω0(β)+ω1(β) (see [13]

for our wall conventions). The billiard dy-

namics is controlled by the Weyl group of the

hyperbolic Kac-Moody algebra A++
2 , and is

therefore chaotic.

Yes

Table 6: The G2-sequence.
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{bi(M)

= 0}
Coxeter

Group
Comments

Coxeter Graph of formal Cox-

eter group / Dynkin Diagram
Chaotic?

{ }, {b2} B++
n

The uncompactified case. The oxidation

endpoint is in D = n + 2 dimensions

and includes a dilaton φ, a 2-form B

and a Maxwell field A [54]. The non-

symmetry dominant walls are the elec-

tric wall of the Maxwell field A and the

magnetic wall of the 2-form B, αn(β) =

e
[A]
1 (β) = β1 + a

2
√

2
φ and α1(β) =

m1···(n−2)(β) = β1+· · ·+βn−2− a√
2

φ

(a2 = 8/n) [13].

Yes for

n ≤ 8,

no for

n > 8.

{b1} D++
n

This compactification projects our the

electric wall e
[A]
1 (β) corresponding to

node n in the original diagram. The

new dominant wall is the electric wall

of the 2-form e
[B]
12 (β) which attaches by

a single link to node n − 2. The result-

ing Kac-Moody algebra is D++
n which is

hyperbolic for 1 ≤ n ≤ 8.

Yes for

n ≤ 8,

no for

n > 8.

{b3} Rn+2

Here we project out the magnetic wall

m
[B]
12···(n−2)

(β) of the 2-form, corre-

sponding to node number 1 in the origi-

nal diagram. The new dominant wall is

the magnetic wall m
[A]
12···(n−1)

(β) which

attaches by a double link to node 0. The

matrix of scalar products between the

dominant walls is a valid Cartan ma-

trix corresponding to the rank n + 2

Lorentzian Kac-Moody algebras Rn+2.

To our knowledge, this class of algebras

is not part of any previous classification.

It is an extension of the twisted affine

algebra D
(2)
n+1 and fulfills the property

of [72]. Since the algebras are not hy-

perbolic, the dynamics is always non-

chaotic.

No

{b1, b2} Zn+2

The electric wall e
[A]
1 (β) of the Maxwell

field and the electric wall e
[B]
12 (β) of the

2-form are both projected out. As a re-

sult the magnetic wall m
[B]

12···(n−2)
(β)

and the gravity wall G1n(n+1)(β) be-

come dominant. Because of the facts ex-

plained in section 3.1 the resulting bil-

liard table is not acute-angled (but is a

simplex). We have displayed the Cox-

eter graph of the formal Coxeter group

associated to the billiard table. It is

a (non-hyperbolic) Lorentzian Coxeter

group, which we call Zn+2. The billiard

group is a quotient of the formal Cox-

eter group by the normal subgroup gen-

erated by the extra relations, which we

have not worked out explicitly. We have

checked that the volume of the billiard

region is infinite so that the dynamics is

not chaotic.

No

Table 7: The Bn-sequence for n > 4.
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{bi(M)

= 0}
Coxeter

Group
Comments

Coxeter Graph of formal Cox-

eter group / Dynkin Diagram
Chaotic?

{b1, b3} Sn+2

This compactification displays an ex-

ample of a “coexistence” of an elec-

tric, a magnetic and a gravity wall

in the set of dominant walls. These

correspond to e
[B]
12 (β), m

[A]

12···(n−1)
(β)

and G1n(n+1)(β). The billiard table

is therefore not a simplex. To analyze

the situation we may consider the set

of dominant walls with the gravity wall

excluded. Then the matrix of scalar

products between these walls gives rise

to the Cartan matrix of a rank n + 2

Lorentzian Kac-Moody algebra Sn+2,

whose Dynkin diagram is displayed to

the right. This is a non-standard ex-

tension of the affine algebra B+
n . The

fundamental domain for this algebra has

infinite volume, and we have checked

that including the gravity wall is not

enough to render the billiard region fi-

nite. Thus, the dynamics is non-chaotic.

No

{b2, b3} Qn+2

In this compactification the magnetic

wall α1(β) = m
[B]
1···(n−2)

(β) of the 2-

form B is projected out and is replaced

by the gravity wall G1n(n+1)(β). The

number of dominant walls is therefore

n + 2 and the billiard table is a sim-

plex. However, due to the presence of

the gravity wall it is not acute-angled.

We display the Coxeter graph of the as-

sociated formal Coxeter group, denoted

by Qn+2. The region bounded by the

new dominant walls contains spacelike

coweights and hence the dynamics is

non-chaotic.

No

{b1, b2,

b3}
A++

n−1

This compactification projects out all p-

form walls, and so only the gravity and

symmetry walls remain, giving rise to

the rank n−1 Kac-Moody algebra A++
n−1

which is hyperbolic for 2 ≤ n ≤ 8.

Because of the presence of a dilaton,

the total space Mβ is however n + 2-

dimensional and hence there is always

a direction of escape, rendering the dy-

namics non-chaotic.

No

Table 8: The Bn-sequence for n > 4.
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{bi(M)

= 0}
Coxeter

Group
Comments

Coxeter Graph of formal Cox-

eter group / Dynkin Diagram
Chaotic?

{} C++
n

The uncompactified case. The oxidation

endpoint corresponds is gravity in D =

4 coupled to a collection of dilatonic

scalars, axions and Maxwell fields [54].

See [13] for the definition of the domi-

nant walls in this case.

Yes for

n ≤ 4,

no for

n > 4

{b1 =

b2}
A++

1

× Cn−1

Because of Poincaré duality we have

b1 = b2 so the only relevant compactifi-

cation is the one for which b1 = b2 = 0.

This renders all Maxwell fields massive,

and the resulting theory is described by

two disconnected diagrams: the pure

gravity piece A++
1 , and a piece Cn−1

associated with the axions. Beacuse of

the disconnected part corresponding to

a finite Lie algebra we know that there

exist spacelike coweights, and hence the

dynamics is non-chaotic.

No for

n ≥ 2

Table 9: The Cn-sequence.
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{bi(M)

= 0}
Coxeter

Group
Comments

Coxeter Graph of formal Cox-

eter group / Dynkin Diagram
Chaotic?

{}, {b1} D++
n

The uncompactified case. The oxidation

endpoint is D = n+2, with matter con-

tent given by a dilaton φ and a 2-form

B. The associated electric and mag-

netic walls, e
[B]
12 (β) and m

[B]
12···(n−2)

(β),

are both dominant before compactifica-

tion [54]. The non-symmetry dominant

walls are the electric and magnetic wall

sof the 2-form B, αn(β) = β1 + β2 +
a√
2

φ and α1(β) = β1 + · · · + βn−2 −
a√
2

φ, respectively (a2 = 8/n) [13].

Yes for

n ≤ 8,

no for

n > 8.

{b2},
{b1, b2}

Zn+2

Compactification on a manifold M with

b2 = 0 (or b1 = b2 = 0) renders

the electric field massive, and the elec-

tric wall is replaced by the gravity wall

G1n(n+1)(β). This new set of dominant

walls do not define an acute-angled bil-

liard table. The formal Coxeter group

associated with the reflections in these

walls is again the Lorentzian Coxeter

group Zn+2, whose Coxeter graph is

displayed to the right. This is the same

Coxeter group which appears in the bil-

liard of the b1 = b2 = 0 compactifi-

cation of the Bn-theory. The billiard

region contains spacelike coweights and

hence the dynamics is non-chaotic.

No

{b3},
{b1, b3}

Wn+2

In this compactification the magnetic

field becomes massive and hence the

magnetic wall m
[B]
12···(n−2)

(β) is pro-

jected out, again rendering the grav-

ity wall G1n(n+1)(β) dominant. The

new set of dominant walls does not de-

fine an acute-angled billiard table. The

Coxeter graph derived from the dom-

inant walls is displayed to the right

and it corresponds to a (non-hyperbolic)

Lorentzian Coxeter group. We have

checked that the fundamental chamber

contains spacelike coweights and hence

the dynamics is non-chaotic.

No

{b2, b3},
{b1, b2,

b3}
A++

n−1

All p-form walls are projected out and

the dominant wall system is the stan-

dard one A++
n−1 for pure gravity. How-

ever, since there is a dilaton the to-

tal scale-factor space Mβ is n + 2-

dimensional, and there will always ex-

ist a direction of escape, rendering the

theory non-chaotic.

No

Table 10: The Dn-sequence for n > 4.
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{bi(M) = 0} n = 2 n = 3 n = 4

{}, {b2} B++
2 c© B++

3 c© B++
4 c©

{b1} D++
2 c© D++

3 c© D++
4 c©

{b1, b2} A++
1 × A1 A++

3 c© A++
3

{b3} K4 c© A++
3 c© L6

{b1, b3} A++
1 A++

3 c© A++
3

{b2, b3} A++
1 A++

3 c© L6

{b1, b2, b3} A++
1 A++

3 c© A++
3

Table 11: Compactifications of the B++
n -models for small n. Chaotic cases are denoted with c©.

The billiard group of the b3 = 0 compactification of the B++
2 -theory is the Weyl group of the

hyperbolic Kac-Moody algebra K4, whose Dynkin diagram is displayed in table 13 (this algebra

is denoted by “4-4” in [73]). Since K4 is hyperbolic, the dynamics is chaotic. The billiard group

B := L6 which controls the b3 = 0 compactification of the B++
4 theory is a quotient of the formal

Coxeter group C := L′

6, whose Coxeter graph is displayed in table 13. The billiard region is

not acute-angled and hence is not a fundamental domain of L6. Moreover, there exist spacelike

coweights and therefore the dynamics is non-chaotic. For all the non-chaotic compactifications in

the table which are described by well known hyperbolic Weyl groups, the β-space Mβ contains

extra dilatonic directions which render the volume of the billiard region infinite.

{bi(M) = 0} n = 2 n = 3 n = 4

{}, {b1} A3 × A+
1 A+++

3 c© D++
4 c©

{b2} A++
1 × A1 M5 A++

3

{b1, b2}, {b2, b3}, A++
1 × A1 A++

2 A++
3

{b1, b2, b3} A++
1 × A1 A++

2 A++
3

{b3}, {b1, b3} A+++
1 N5 A++

3

Table 12: Compactifications of the D++
n -models for small n. Chaotic cases are denoted with c©.

The b2 = 0 compactification of the D++
3 theory is governed by the billiard group B := M5 which is

a quotient of the formal Coxeter group C := M ′

5, as defined through the Coxeter graph in table 13.

The billiard region contains obtuse angles and so is not a fundamental domain of M5. Furthermore,

the billiard region contains spacelike coweights and hence the dynamics is non-chaotic. The story

for the billiard group N5 is similar, and the Coxeter graph associated with the formal Coxeter

group N ′

5 is given in table 13. The b1 = 0 compactification of the D++
3 -theory is controlled by the

Weyl group of the Lorentzian Kac-Moody algebra A+++
3 . Although this algebra is not hyperbolic,

the theory is nevertheless chaotic since the number of dominant walls, 6, exceeds the dimension

of β-space, dim Mβ = 5, and the billiard region is of finite volume. This is similar to the X9

case in table 1. For all the non-chaotic compactifications in the table which are described by well

known hyperbolic Weyl groups, the β-space Mβ contains extra dilatonic directions which render

the volume of the billiard region infinite.
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K4 L′
6

M ′
5 N ′

5

Table 13: K4 represents the Dynkin diagram of a hyperbolic Kac-Moody algebra, whose Weyl

group controls the chaotic dynamics of the b3 = 0 compactification of the B++
2 -theory. The remain-

ing Coxeter graphs represent the formal Coxeter groups L′

6, M ′

5 and N ′

5 associated with various

compactifications of the B++
n and D++

n theories (see tables 11 and 12). As usual, the extra circles

denote which dihedral angles are obtuse. In these graphs, “G” denotes the dominant gravity wall,

“EA” the dominant electric wall of the Maxwell field A, “EB” and “MB” denote, respectively, the

dominant electric and magnetic walls of the 2-form B. See tables 8 and 10 for a summary of the

field contents of these theories.
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